Open Access Open Access  Restricted Access Subscription or Fee Access

Convective Condensation of Methanol Vapor in Presence of a Non-Condensable Gas with Turbulent Flow in Vertical Tube


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v9i2.5311

Abstract


The problem of turbulent film condensation of methanol vapor in the presence of concentration non-condensable gas such as humid air flowing in a vertical tube under turbulent forced convection conditions is formulated theoretically. The vapor condensing at dew point temperature releases both sensible and latent heats and diffuses on to the surface of the. Thus it is treated as combined heat and mass transfer problem governed by mass, momentum and energy balance equations for the vapor-gas mixture and diffusion equation for the vapor species. The flow of the falling condensate film is governed by the momentum and energy balance equations. The effect of the influencing parameters are studied so the effect of inlet Reynolds number, the effect of temperature gradient, mass fraction are illustrated. The numerical results demonstrate that an important concentration of no-condensable gas reduces the heat transfer coefficient and film thickness considerably. The local heat flux and film thickness increase as tube surface temperature decreases at any bulk concentration of non-condensable gas. Moreover, inlet velocity increases as film thickness decreases and heat flux increases.
Copyright © 2015 Praise Worthy Prize - All rights reserved.

Keywords


Condensation; Heat and Mass Transfers; Mixed Convection; Turbulent Flow; Vertical Tube; Methanol Vapour

Full Text:

PDF


References


E.C. Siow, Numerical solution of two-phase model for laminar film condensation of vapour-gas mixtures in channels. International Journal of Thermal Sciences, V.46, pp. 458–466, 2007.
http://dx.doi.org/10.1016/j.ijthermalsci.2006.07.001

Y. Belkassmi, K. Gueraoui, N. Hassanain, Numerical study in condensing of methanol vapor in a vertical tube by mixed convection in the presence of non-condensable Gas. Adv Studies Theor Phys, V. 6, pp. 1065 – 1076, 2012.

S. Oh, S. T. Revankar, Analysis of the complete condensation in a vertical tube passive condenser, International Communications in Heat and Mass Transfer. V.32, pp. 716–727, 2005.
http://dx.doi.org/10.1016/j.icheatmasstransfer.2004.10.013

Y.S. Chin, S.J Ormiston, H.M. Soliman, Two-phase boundary-layer model for laminar mixed-convection condensation with a non condensable gas on inclined plates. Heat and Mass Transfer. V.34, pp. 271–277, 1998.
http://dx.doi.org/10.1007/s002310050259

L. Merouani, B. Zeghmati, A. Belhamri, Numerical modeling of convective vapour condensation with non-condensable gases between two coaxial vertical cylinders. The Canadian Journal of Chemical Engineering, V.91, pp.1597-1607, 2013.
http://dx.doi.org/10.1002/cjce.21747

Y. El hammami M. Feddaoui T. Mediouni R. Mir A. Mir. Étude numérique de la condensation en film par convection mixte a l’intérieur d’un canal à paroi poreuse. Revue International d’Héliotechnique, V.42, pp.18–24, 2010.

Ibrahim, T.A., Hassan, M.A.M., Condensation heat transfer characteristics of R22, R134a, R410A and R407C on single horizontal plain and finned tubes, (2013) International Review of Mechanical Engineering (IREME), 7 (4), pp. 664-672.

H. Louahlia, P.K. Panday, Transfert thermique pour la condensation du R123, du R134a et de leurs mélanges en écoulement forcé entre deux plaques planes horizontales: Etude numérique, Rev. Gén. Therm., V.35, pp.615–624, 1996.
http://dx.doi.org/10.1016/s0035-3159(96)80024-9

P.K. Panday Two-dimensional turbulent film condensation of vapours flowing inside a vertical tube and between parallel plates: a numerical approach, Int. Journal of Refrigeration V.26, pp. 492-503, 2003.
http://dx.doi.org/10.1016/s0140-7007(02)00162-7

C.Y. Wang, C.J. Tu, Effects of non-condensable gas on laminar film condensation in a vertical tube, International Journal of Heat and Mass Transfer V.31, No.11, pp.2339-2345, 1988.
http://dx.doi.org/10.1016/0017-9310(88)90165-2

Ormiston, S.J., Groff, M.K., Soliman, H.M., Numerical solution of film condensation from turbulent flow of vapor–gas mixtures in vertical tubes. International Journal of Heat and Mass Transfer V.50, pp.3899–3912, 2007.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.02.012

S. Yih, J. Liu, "Prediction of heat transfer in turbulent falling liquid films with or without interfacial shear", AIChE Journal, V.29, pp. 903-909, 1983.
http://dx.doi.org/10.1002/aic.690290605

T. Cebeci, A. M. O. Smith, A finite difference method for calculating compressible and turbulent boundary layers, J. Basic Engineering. Trans ASME, V. 92, pp. 523-535, 1970.
http://dx.doi.org/10.1115/1.3425054

B. E. Launder, B. I. Sharma, Application of the energy-dissipation of turbulence to calculation of low Reynolds number flow near a spinning disc, Lett. Heat Mass transfer, V.1, pp. 131-138, 1974.
http://dx.doi.org/10.1016/0094-4548(74)90150-7

M. Feddaoui, H. Meftah, A. Mir, The numerical computation of the evaporative cooling of falling water film in turbulent mixed convection inside a vertical tube, Int. J. Heat Mass Transfer, V.33, pp. 917–927, 2006.
http://dx.doi.org/10.1016/j.icheatmasstransfer.2006.04.004

Patankar S.V., Numerical Heat Transfer and Fluid Flow. Hemisphere/Mc Graw Hill. New York, Chap.6, 1980.

Raithby, G. D.; Schneider, G. E., Numerical solutions of problems in incompressible fluid flow: treatment of the velocity-pressure coupling, Numer. Heat. Tran, V.2, pp. 417-440, 1979.
http://dx.doi.org/10.1080/10407787908913423

Zohreh Mansoori, Majid Saffar-Avval, Shiva Taghavi, Numerical Modeling of Nanofluid Heat Transfer in a Pipe, (2013) International Journal on Numerical and Analytical Methods in Engineering (IRENA), 1 (1), pp. 57-64.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize