Open Access Open Access  Restricted Access Subscription or Fee Access

Sensitivity Analysis of the CO-SAR Machine


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v9i1.4814

Abstract


The day-long continuous production of cold is one of the challenges for a solar-driven cooling system due to the intermittent nature of the solar radiation. In a previous work (Energy 2013;61:167-178), a continuous operation solar-powered adsorption refrigeration (CO-SAR) system was introduced. A further study on the system dependency on various parameters is presented in the current work. These parameters include the evaporator, the condensation, the ambient, and the highest cycle temperatures. That is besides, the effect of metallic casing heat capacity, and total porosity of the adsorption bed are studied. The thermodynamic analysis is based on the steady state energy balance principle. Moreover, the Dubinin-Astakhov equation is used to represent the adsorption equilibrium model. Furthermore, a CO-SAR system which operates with activated carbon-methanol working pair is considered the case investigated.
Copyright © 2015 Praise Worthy Prize - All rights reserved.

Keywords


Refrigeration; Adsorption; Solar Energy; Sensitivity Analysis

Full Text:

PDF


References


H. Z. Hassan, Performance Evaluation of a Continuous Operation Adsorption Chiller Powered by Solar Energy Using Silica Gel and Water as the Working Pair, Energies, Vol. 7, n. 10, pp. 6382–6400, Oct. 2014.
http://dx.doi.org/10.3390/en7106382

H. Z. Hassan and A. A. Mohamad, Thermodynamic analysis and theoretical study of a continuous operation solar-powered adsorption refrigeration system, Energy, Vol. 61, pp. 167–178, 2013.
http://dx.doi.org/10.1016/j.energy.2013.09.004

Ooshaksaraei, P., Sopian, K., Zulkifli, R., Solar assisted air-conditioner, simulation and economic analysis at four-seasonal climate, (2013) International Review of Mechanical Engineering (IREME), 7 (2), pp. 350-357.

Ali, C., Nciri, R., Rabhi, K., Nasri, F., Ben Bacha, H., A study of an air-conditioning prototype powered by solar energy, (2013) International Review of Mechanical Engineering (IREME), 7 (1), pp. 60-66.

H. Z. Hassan and A. A. Mohamad, A review on solar cold production through absorption technology, Renew. Sustain. Energy Rev., Vol. 16, n. 7, pp. 5331–5348, 2012.
http://dx.doi.org/10.1016/j.rser.2012.04.049

H. Z. Hassan and A. A. Mohamad, A review on solar-powered closed physisorption cooling systems, Renew. Sustain. Energy Rev., Vol. 16, n. 5, pp. 2516–2538, 2012.
http://dx.doi.org/10.1016/j.rser.2012.02.068

Ramesh Srenyvasan, V., Sakthivel, M., Performance and comparative study of a passive solar still in a forest area between summer and winter conditions in South India, (2014) International Review of Mechanical Engineering (IREME), 8 (3), pp. 495-501.

Amraoui, M., Aliane, K., Dynamic and Thermal Study of the Three-Dimensional Flow in a Flat Plate Solar Collector with Transversal Baffles, (2014) International Review of Mechanical Engineering (IREME), 8 (6), pp. 1030-1036.
http://dx.doi.org/10.15866/ireme.v8i6.1623

Koilraj Gnanadason, M., Senthil Kumar, P., Wilson, V.H., Kumaravel, A., Comparison between performance analyses of a single basin solar still made up of copper with and without use of vacuum, (2013) International Review of Mechanical Engineering (IREME), 7 (7), pp. 1495-1506.

Ali, C., Rabhi, K., Nciri, R., Nasri, F., Ben Bacha, H., New adsorption air conditioning system powered by solar energy; operation principals and winter mode modelling and simulation, (2013) International Review of Mechanical Engineering (IREME), 7 (1), pp. 96-104.

Amoresano, A., Langella, G., Meo, S., Cycle efficiency optimization for ORC solar plants, (2013) International Review of Mechanical Engineering (IREME), 7 (5), pp. 888-894.

Selvakumar, P., Somasundaram, P., Instant hot water generation system for domestic utility in rural areas, (2013) International Review of Mechanical Engineering (IREME), 7 (5), pp. 869-873.

Zailani, M.E., Feasibility study of Dish stirling systems in Malaysia, (2013) International Review of Mechanical Engineering (IREME), 7 (6), pp. 1229-1235.

Maalej, S., Zaghdoudi, M.C., Ramzi, R., Experimental study on the thermal performances of a heat pipe solar collector, (2013) International Review of Mechanical Engineering (IREME), 7 (1), pp. 1-9.

Y. Fan, L. Luo, and B. Souyri, Review of solar sorption refrigeration technologies: Development and applications, Renew. Sustain. Energy Rev., Vol. 11, n. 8, pp. 1758–1775, Oct. 2007.
http://dx.doi.org/10.1016/j.rser.2006.01.007

K. Sumathy, K. H. Yeung, and L. Yong, Technology development in the solar adsorption refrigeration systems, Prog. Energy Combust. Sci., Vol. 29, n. 4, pp. 301–327, Jan. 2003.
http://dx.doi.org/10.1016/s0360-1285(03)00028-5

R. Z. Wang, J. P. Jia, Y. H. Zhu, Y. Teng, J. Y. Wu, J. Cheng, and Q. B. Wang, Study on a New Solid Absorption Refrigeration Pair: Active Carbon Fiber—Methanol, J. Sol. Energy Eng., Vol. 119, n. 3, p. 214, Aug. 1997.
http://dx.doi.org/10.1115/1.2888021

F. Meunier and N. Douss, Performance of adsorption heat pumps. Active carbon-methanol and zeolite-water pairs, ASHRAE Trans., Vol. 2, pp. 267–274, 1990.

H. Z. Hassan, A. Mohamad, and R. Bennacer, Simulation of an adsorption solar cooling system, Energy, Vol. 36, n. 1, pp. 530–537, 2011.
http://dx.doi.org/10.1016/j.energy.2010.10.011

H. Z. Hassan, Energy Analysis and Performance Evaluation of the Adsorption Refrigeration System, ISRN Mech. Eng., Vol. 2013, pp. 1–14, 2013.
http://dx.doi.org/10.1155/2013/704340

H. Z. Hassan, A. A. Mohamad, and H. A. Al-Ansary, Development of a continuously operating solar-driven adsorption cooling system: Thermodynamic analysis and parametric study, Appl. Therm. Eng., Vol. 48, pp. 332–341, 2012.
http://dx.doi.org/10.1016/j.applthermaleng.2012.04.040

H. Z. Hassan, A Solar Powered Adsorption Freezer: A Case Study for‎ Egypt’s Climate, Int. J. Energy Eng., Vol. 3, n. 1, pp. 21–29, 2013.

Hassan, H.Z., Effect of parameters variation on the performance of adsorption based cooling systems, (2013) International Review of Mechanical Engineering (IREME), 7 (1), pp. 24-37.

M. Louajari, A. Mimet, and A. Ouammi, Study of the effect of finned tube adsorber on the performance of solar driven adsorption cooling machine using activated carbon–ammonia pair, Appl. Energy, Vol. 88, n. 3, pp. 690–698, Mar. 2011.
http://dx.doi.org/10.1016/j.apenergy.2010.08.032

D. C. Wang and J. P. Zhang, Design and performance prediction of an adsorption heat pump with multi-cooling tubes, Energy Convers. Manag., Vol. 50, n. 5, pp. 1157–1162, May 2009.
http://dx.doi.org/10.1016/j.enconman.2009.01.028

E. E. Anyanwu and N. V. Ogueke, Thermodynamic design procedure for solid adsorption solar refrigerator, Renew. Energy, Vol. 30, n. 1, pp. 81–96, Jan. 2005.
http://dx.doi.org/10.1016/j.renene.2004.05.005

M. Li, R. . Wang, Y. . Xu, J. . Wu, and a. . Dieng, Experimental study on dynamic performance analysis of a flat-plate solar solid-adsorption refrigeration for ice maker, Renew. Energy, Vol. 27, n. 2, pp. 211–221, Oct. 2002.
http://dx.doi.org/10.1016/s0960-1481(01)00188-4

M. Li, H. B. Huang, R. Z. Wang, L. L. Wang, W. M. Yang, and W. D. Cai, Study on intermittent refrigeration phenomenon for solar solid adsorption refrigeration, Appl. Therm. Eng., Vol. 25, n. 11–12, pp. 1614–1622, Aug. 2005.
http://dx.doi.org/10.1016/j.applthermaleng.2004.11.010

F. Lemmini and a. Errougani, Building and experimentation of a solar powered adsorption refrigerator, Renew. Energy, Vol. 30, n. 13, pp. 1989–2003, Oct. 2005.
http://dx.doi.org/10.1016/j.renene.2005.03.003

F. Lemmini and A. Errougani, Experimentation of a solar adsorption refrigerator in Morocco, Renew. Energy, Vol. 32, n. 15, pp. 2629–2641, Dec. 2007.
http://dx.doi.org/10.1016/j.renene.2007.01.004

C. Hildbrand, P. Dind, M. Pons, and F. Buchter, A new solar powered adsorption refrigerator with high performance, Sol. Energy, Vol. 77, n. 3, pp. 311–318, Sep. 2004.
http://dx.doi.org/10.1016/j.solener.2004.05.007

H. L. Luo, Y. J. Dai, R. Z. Wang, R. Tang, and M. Li, Year round test of a solar adsorption ice maker in Kunming, China, Energy Convers. Manag., Vol. 46, n. 13–14, pp. 2032–2041, Aug. 2005.
http://dx.doi.org/10.1016/j.enconman.2004.10.019

E. E. Anyanwu and C. I. Ezekwe, Design, construction and test run of a solid adsorption solar refrigerator using activated carbon/methanol, as adsorbent/adsorbate pair, Energy Convers. Manag., Vol. 44, n. 18, pp. 2879–2892, Nov. 2003.
http://dx.doi.org/10.1016/s0196-8904(03)00072-4

O. S. Headley, a. F. Kothdiwala, and I. a. McDoom, Charcoal-methanol adsorption refrigerator powered by a compound parabolic concentrating solar collector, Sol. Energy, Vol. 53, n. 2, pp. 191–197, Aug. 1994.
http://dx.doi.org/10.1016/0038-092x(94)90481-2

M. I. González and L. R. Rodríguez, Solar powered adsorption refrigerator with CPC collection system: Collector design and experimental test, Energy Convers. Manag., Vol. 48, n. 9, pp. 2587–2594, Sep. 2007.
http://dx.doi.org/10.1016/j.enconman.2007.03.016

M. Li and R. Z. Wang, A study of the effects of collector and environment parameters on the performance of a solar powered solid adsorption refrigerator, Renew. Energy, Vol. 27, n. 3, pp. 369–382, Nov. 2002.
http://dx.doi.org/10.1016/s0960-1481(02)00009-5

K. C. a. Alam, B. B. Saha, a. Akisawa, and T. Kashiwagi, Optimization of a solar driven adsorption refrigeration system, Energy Convers. Manag., Vol. 42, n. 6, pp. 741–753, Apr. 2001.
http://dx.doi.org/10.1016/s0196-8904(00)00100-x

N. V. Ogueke and E. E. Anyanwu, Design improvements for a collector/generator/adsorber of a solid adsorption solar refrigerator, Renew. Energy, Vol. 33, n. 11, pp. 2428–2440, Nov. 2008.
http://dx.doi.org/10.1016/j.renene.2008.02.007

a. El Fadar, a. Mimet, a. Azzabakh, M. Pérez-García, and J. Castaing, Study of a new solar adsorption refrigerator powered by a parabolic trough collector, Appl. Therm. Eng., Vol. 29, n. 5–6, pp. 1267–1270, Apr. 2009.
http://dx.doi.org/10.1016/j.applthermaleng.2008.06.012

X. Q. Zhai and R. Z. Wang, Experimental investigation and performance analysis on a solar adsorption cooling system with/without heat storage, Appl. Energy, Vol. 87, n. 3, pp. 824–835, Mar. 2010.
http://dx.doi.org/10.1016/j.apenergy.2009.10.002

D. Karamanis and E. Vardoulakis, Application of zeolitic materials prepared from fly ash to water vapor adsorption for solar cooling, Appl. Energy, Vol. 97, pp. 334–339, Sep. 2012.
http://dx.doi.org/10.1016/j.apenergy.2011.12.078

H. Luo, R. Wang, and Y. Dai, The effects of operation parameter on the performance of a solar-powered adsorption chiller, Appl. Energy, Vol. 87, n. 10, pp. 3018–3022, Oct. 2010.
http://dx.doi.org/10.1016/j.apenergy.2010.03.013

R. Sekret and M. Turski, Research on an adsorption cooling system supplied by solar energy, Energy Build., Vol. 51, pp. 15–20, Aug. 2012.
http://dx.doi.org/10.1016/j.enbuild.2012.04.008

H. Z. Hassan, A. A. Mohamad, H. A. Al-Ansary, and Y. M. Alyousef, Dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle, Energy, Oct. 2014.
http://dx.doi.org/10.1016/j.energy.2014.09.071

D. Do Duong, Adsorption Analysis: Equilibria and Kinetics, Series on Chemical Engineering Vol 2. London: Imperial College Press, 1998, p. 892.
http://dx.doi.org/10.1142/9781860943829

R. C. Bansal and M. Goyal, Activated Carbon Adsorption. CRC Press, 2005, p. 520.
http://dx.doi.org/10.1201/9781420028812

M. M. Dubinin and V. A. Astakhov, Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents, Izv Akad Nauk SSSR, Ser Khim, pp. 5–11, 1971.
http://dx.doi.org/10.1007/bf00849308

M. M. Dubinin and V. A. Astakhov, Description of Adsorption Equilibria of Vapors on Zeolites over Wide Eanges of Temperature and Pressure, Adv. Chem. Ser., Vol. 102, pp. 69–85, 1971.
http://dx.doi.org/10.1021/ba-1971-0102.ch044

M. M. Dubinin, Physical Adsorption of Gases and Vapors in Micropores, Prog. Surf. Membr. Sci., Vol. 9, pp. 1–70, 1975.
http://dx.doi.org/10.1016/b978-0-12-571809-7.50006-1

R. J. B. Craven and K. M. de Reuck, Methanol, International Thermodynamic Tables of the Fluid State Vol. 12. Blackwell Science, 1993.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize