Open Access Open Access  Restricted Access Subscription or Fee Access

Numerical and Theoretical Modeling of Natural Convection of Nanofluids in a Vertical Rectangular Cavity Investigate the Effects of a Magnetic Field


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v8i6.3954

Abstract


In this work, the stencil adaptive method is applied to investigate the effects of a magnetic field on mixed convection of Al2O3-water nanofluid in a vertical rectangular enclosure filled. The enclosure is bounded by two isothermal vertical walls at temperatures Th and Tc and by two horizontal adiabatic walls. A uniform magnetic field is applied in a horizontal direction. The main objective of this study is to investigate the influence of several pertinent parameters in the following ranges: Rayleigh number of the base fluid, Hartmann number and the solid volume fraction of the nanoparticles on the heat transfer performance of the nanofluid. Based on the obtained numerical results, the heat transfer rate increases with an increase of the Rayleigh number but, it decreases with an increase of the Hartmann number. Also, the results indicate that the heat transfer of the nanofluid could be either enhanced or mitigated with respect to that of the base fluid depending on the Rayleigh number.
Copyright © 2014 Praise Worthy Prize - All rights reserved.

Keywords


Magnetic Field; Natural Convection; Nanofluid; Numerical Modeling; Finite Volume Method

Full Text:

PDF


References


Kh. Al.Salem, H. F.Öztop, I. Pop, Y.Varol, « Effects of moving lid direction on MHD mixed convection in a linearly heated cavity », Int. J. Heat Mass Transf. 55 (2012) 1103-1112.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.09.062

M. Moreau, Magnetohydrodynamics, Kluwer Acadamic Publishers, The Netherlands, 1990.

N. Rudraiah, R.M. Barron, M. Venkatachalappa, C.K. Subbaraya, «Effect of a magnetic field on free convection in a rectangular enclosure », International Journal of Engineering Science 33 (8) (1995) 1075e1084.
http://dx.doi.org/10.1016/0020-7225(94)00120-9

K. Khanafer, K. Vafai and M. Lightstone, « Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluides », International Journal of Heat and Mass Transfer, vol. 46, pp. 3639-3653, 2003.
http://dx.doi.org/10.1016/s0017-9310(03)00156-x

K. Kahveci, « Buoyancy driven heat transfer of nanofluids in a tilted enclosure », Journal of Heat Transfer, vol. 132, pp. 062501, 2010.
http://dx.doi.org/10.1115/1.4000744

N. Putra, W. Roetzel and S.K. Das, « Natural convection of nano-fluids », Heat and Mass Transfer, vol. 39, pp. 775-784, 2003.
http://dx.doi.org/10.1007/s00231-002-0382-z

D. Wen and Y. Ding, « Formulation of nanofluids for natural convective heat transfer applications », International Journal of Heat and Fluid Flow, vol. 26, pp. 855-864, 2005.
http://dx.doi.org/10.1016/j.ijheatfluidflow.2005.10.005

H.F. Oztop and E. Abu-Nada, « Numerical study of natural convection in partially heated rectangular enclosure filled with nanofluids », International Journal of Heat and Fluid Flow, vol. 29, pp. 1326–1336, 2008.
http://dx.doi.org/10.1016/j.ijheatfluidflow.2008.04.009

E. Abu-Nada, « Effects of variable viscosity and thermal conductivity of Al2O3–water nanofluid on heat transfer enhancement in natural convection », International Journal of Heat and Fluid Flow, vol. 30, pp.679–690, 2009.
http://dx.doi.org/10.1016/j.ijheatfluidflow.2009.02.003

E. Abu-Nada, « Effects of variable viscosity and thermal conductivity of CuO–water nanofluid on heat transfer enhancement in natural convection: mathematical model and simulation », ASME Journal of Heat Transfer, vol. 132, pp. 052401, 2010.
http://dx.doi.org/10.1115/1.4000440

E. Abu-Nada, Z. Masoud, H. Oztop and A. Campo, « Effect of nanofluide variable properties on natural convection in enclosures », International Journal of Thermal Sciences, vol. 49, pp. 479–491, 2010.
http://dx.doi.org/10.1016/j.ijthermalsci.2009.09.002

M. Pirmohammadi and M. Ghassemi, « Effect of magnetic field on convection heat transfer inside a tilted square enclosure»,International Communications in Heat and Mass Transfer, vol. 36, pp. 776-780, 2009.
http://dx.doi.org/10.1016/j.icheatmasstransfer.2009.03.023

S. Sivasankaran and C.J. Ho, « Effect of temperature dependent properties on MHD convection of water near its density maximum in a square cavity », International Journal of Thermal Sciences, vol. 47, pp. 1184-1194, 2008.
http://dx.doi.org/10.1016/j.ijthermalsci.2007.10.001

M.C. Ece and E. Buyuk, « Natural-convection flow under a magnetic field in an inclined rectangular enclosure heated and cooled on adjacent walls », Fluid Dynamics Research, vol. 38, pp. 564-590, 2006.
http://dx.doi.org/10.1016/j.fluiddyn.2006.04.002

M. Sathiyamoorthy and A. Chamkha, « Effect of magnetic field on natural convection flow in a liquid gallium filled square cavity for linearly heated side wall(s) », International Journal of Thermal Sciences,vol. 49, pp. 1856-1865, 2010.
http://dx.doi.org/10.1016/j.ijthermalsci.2010.04.014

H.C. Brinkman, « The viscosity of concentrated suspensions and solution », The Journal of Chemical Physics, vol. 20, pp. 571-581, 1952.
http://dx.doi.org/10.1063/1.1700493

Maxwell J.C. 1873. « A treatise on electricity and magnetism », Oxford: Clarendon Press.

C.J. Ho, M.W. Chen, Z.W. Li, « Numerical simulation of natural convection of nanofluide in a square enclosure: Effects due to uncertainties of viscosity and thermal conductivity », International Journal of Heat and Mass Transfer 51, (2008), 4506–4516.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.12.019

Y. Xuan and W. Roetzel, « Conceptions for heat transfer correlation of nanofluids », International Journal of Heat and Mass Transfer, vol. 43, pp. 3701-3707, 2000.
http://dx.doi.org/10.1016/s0017-9310(99)00369-5

Sammouda, M., Gueraoui, K., Driouich, M., El Hammoumi, A., Brahim, A.I., The variable porosity effect on the natural convection in a non-darcy porous media, (2011) International Review on Modelling and Simulations (IREMOS), 4 (5), pp. 2701-2707.

Driouich, M., Gueraoui, K., Haddad, Y.M., Hammoumi, A.E., Kerroum, M., Fehri, O.F., Mathematical modeling of non permanent flows of molten polymers, (2010) International Review of Mechanical Engineering (IREME), 4 (6), pp. 689-694.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize