Open Access Open Access  Restricted Access Subscription or Fee Access

Numerical Model for Analysis in Space Radiators for Critical Conditions Operating


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v8i5.2063

Abstract


Satellites, normally, are subject to large variations in temperature due to its orbit. On the other hand, the equipment that make up feature limits (minimum and maximum) of temperature must not be exceeded so that the satellite's operation is not compromised. In this way, this paper presents a numerical comparison between a plane radiator and finned radiator in critical operating conditions. Designed to operate in passive thermal control of satellites, these devices reject the heat generated by electronic components and minimize the absorption of heat from external sources (especially the sun) in order to maintain the temperature of the satellite components within their operating ranges. For this purpose, two algorithms in Fortran® were developed for solving the nonlinear system of equations which govern the conductive-radioactive coupling in both radiators.
These equations were discretized by two-dimensional Finite Volume Method and the resulting system was solved with the application of Tri-Diagonal Matrix Algorithm combined with an iterative process. The numerical obtained results show the temperature profiles to both radiators studied in critical operation conditions.
Copyright © 2014 Praise Worthy Prize - All rights reserved.

Keywords


Finned Radiator; Numeric Model; Critical Cases; Finite Volume Method

Full Text:

PDF


References


Saboya, S.M., 1987 “Análise Térmica de Coletor Solar com Absorvedor Aletado”, Tese de Doutorado, ITA, São José dos Campos.

Gilmore, D. G.,1994. Spacecraft Thermal Control Handbook. 2ªed. El Segundo, California: The aerospace Corporation Press. v. 1, 836 p.

Cuco, A.P.C., Sousa, F.L., Vlassov, V.V. and Neto, A.J.S., 2008. Multi-Objetive Design Optimization of a New Space Radiator. Optimization and Engineering, Vol 12, pp 393-406.
http://dx.doi.org/10.1007/s11081-011-9142-6

Fischer, M. Thermal Control. 1995. Disponível em

Nazari, A., Emami, H. 2008. Thermal Control and Thermal Sensors of Observation Satellite. In: The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Beijing. Vol. XXXVII. Part B2.

Lieblein, S. and Diedrich, J.H., 1965. Material and Geometry Aspects of Space Radiators. Winter Meeting of the American Society, Washington, D.C.

Sorice, A. F., 2007. “Análise da Evolução de Longo Prazo das Temperaturas do Satélite SCD-1”. 78 f. Tese de mestrado, ITA, São José dos Campos.

Garcia, E.C., 1996. Condução, Convecção e Radiação Acopladas em Coletores e Radiadores Solares. Tese de Doutorado, Instituto Tecnológico de Aeronáutica, São José dos Campos.

Silva, D.F., Garcia, E.C., Experimental and numerical investigation of transverse thermal conductivity of an aluminum honeycomb panel, (2014) International Review of Mechanical Engineering (IREME), 8 (2), pp. 344-349.

Kumar, S.S.K., Nayak, V., Venkateshan, S.P., 1993. Optimum finned space radiators. Int. J. Heat and Fluid Flow, Vol. 14, No. 2, pp 191-200.
http://dx.doi.org/10.1016/0142-727x(93)90028-l

Silva, D.F., 2009. “Análise de Projeto Preliminar de Controle Térmico do Satélite ITASAT”, Tese de Mestrado, ITA, São José dos Campos.

Gasparini, R. R. 2005. “Modelagem da Transferência de Calor Combinada por Condução e Radiação em Isolantes Térmicos de Edificações”. 89 f. Tese de mestrado. – Ponfifícia Universidade Católica do Paraná, Curitiba.

Siegel, R., Howell, J.R., 1972. Thermal Radiation Heat Transfer, McGraw-Hill, New York.
http://dx.doi.org/10.1002/aic.690180243

Sparrow, E. M., Cess, R. D. Radiation Heat Transfer. 1978. MacGraw-Hill, New York.

Shih, T.M., 1984. Numerical Heat Transfer, Hemisphere, Washington.
http://dx.doi.org/10.1080/07373938508916301

Versteeg, H.K. and Malalasekera, W., 1995. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Longman Scientific & Technical. Harlow Essex, 1nd edition.

Campos, F. F., 2007. Algoritmos Numéricos. 2ªed. Belo Horizonte: LTC Editora. 419 p.

Omar, H.M., Developing geno-fuzzy controller for satellite stabilization with gravity gradient, (2014) International Review of Aerospace Engineering, 7 (1), pp. 8-16.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize