A Review on Lattice Boltzmann Method for Numerical Prediction of Nanofluid Flow


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


The lattice Boltzmann method (LBM) has evolved to become a well accepted as a useful method to simulate various fluid behaviors. In the meantime, research toward the heat transfer enhancement due to the use of nanofluid using lattice Boltzmann method has recently become attention for many researchers. This paper intends to provide a brief review of researches on application of lattice Boltzmann method on the prediction of nanofluid and identifies opportunities for future research.
Copyright © 2013 Praise Worthy Prize - All rights reserved.

Keywords


Heat Transfer; Lattice Boltzmann Method; Nanofluid; Nusselt Number

Full Text:

PDF


References


L. Yanhong, A lattice Boltzmann model for blood flows, Applied Mathematical Modelling, Vol. 36, n. 7, pp. 2890-2899, 2012.

Sidik, N.A.C., Khan, A.A., Manshor, A.H., Safdari, A., Jahanshaloo, L., Predictions of flow over cavities by multi-relaxation time lattice Boltzmann method, (2012) International Review of Mechanical Engineering (IREME), 6 (7), pp. 1661-1666.

Sidik, N.A.C., Munir, F.A., Lattice Boltzmann numerical prediction of fluid flow in various shapes of shear driven cavity, (2012) International Review of Mechanical Engineering (IREME), 6 (3), pp. 565-573.

L. Chaofeng, Y. Jidong, N. Yushan, A multiplicative decomposition of Poiseuille number on rarefaction and roughness by lattice Boltzmann simulation, Computers & Mathematics with Applications, Vol. 61, n. 12, pp. 3528-3536, 2011.

T. Jonas, D. P. Giuseppe, M. Yaoming, A lattice Boltzmann method for immiscible two-phase Stokes flow with a local collision operator, Computers & Mathematics with Applications, Vol. 65, n. 6, pp. 864-881,2013.

Y. Guangwu, Z. Jianying, A higher-order moment method of the lattice Boltzmann model for the Korteweg–de Vries equation, Mathematics and Computers in Simulation, Vol. 79, n. 5, pp. 1554-1565, 2009.

S.B. Edo, V. Maddalena, Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries, Computers & Mathematics with Applications, Vol. 59, n. 7, pp. 2305-2314, 2010.

O. Pelliccioni, M. Cerrolaza, R. Surós, A biofluid dynamic computer code using the general lattice Boltzmann equation, Advances in Engineering Software, Vol. 39, n. 7, pp. 593-611, 2008.

Sidik, N.A.C., Masoud, G., Solution to natural convection heat transfer by two different approaches: Navier stokes and lattice Boltzmann, (2012) International Review of Mechanical Engineering (IREME), 6 (4), pp. 705-711.

S. Pirker, C. Goniva, C. Kloss, S. Puttinger, J. Houben, S. Schneiderbauer, Application of a hybrid Lattice Boltzmann–Finite Volume turbulence model to cyclone short-cut, Powder Technology, Vol. 235, pp. 572-580, 2013.

C.K. Chen, T.S. Yen, Y.T. Yang, Lattice Boltzmann method simulation of a cylinder in the backward-facing step flow with the field synergy principle, International Journal of Thermal Sciences, Vol. 45, n. 10, pp. 982-989, 2006.

Sidik, N.A.C., Goudarzi, M., Witri, M.A., Prediction of the dynamics of droplet on solid surface using lattice Boltzmann method, (2011) International Review of Mechanical Engineering (IREME), 5 (7), pp. 1241-1245.

D. Anderl, S. Bogner, C. Rauh, U. Rüde, A. Delgado, Free surface lattice Boltzmann with enhanced bubble model, Computers & Mathematics with Applications, In Press.

M. Schönherr, K. Kucher, M. Geier, M. Stiebler, S. Freudiger, M. Krafczyk, Multi-thread implementations of the lattice Boltzmann method on non-uniform grids for CPUs and GPUs, Computers & Mathematics with Applications, Vol. 61, n. 12, pp. 3730-3743, 2011.

Y.L. Duan, R.X. Liu, Lattice Boltzmann simulations of triangular cavity flow and free-surface problem, Journal of Hydrodynamics, Ser. B, Vol. 19, n. 2, pp. 127-134, 2007.

Sidik, N.A.C., Jahanshaloo, L., Prediction of dynamics of solid particles using lattice Boltzmann method, (2011) International Review of Mechanical Engineering (IREME), 5 (7), pp. 1235-1240.

L. Yanhong, A multi-energy-level lattice Boltzmann model for Maxwell’s equations without sources, Journal of Electrostatics, Vol. 69, n. 6, pp. 564-570, 2011.

D. Kandhai, A. Koponen, A.G. Hoekstra, M. Kataja, J. Timonen, P.M.A. Sloot, Lattice-Boltzmann hydrodynamics on parallel systems, Computer Physics Communications, Vol. 111, N. 1–3, pp. 14-26, 1998.

Mussa, M.A., Abdullah, S., Nor Azwadi, C.S., Zulkifli, R., Lattice boltzmann simulation of cavity flows at various reynolds numbers, (2011) International Review on Modelling and Simulations (IREMOS), 4 (4), pp. 1909-1919.

X. Shan, Simulation of Rayleigh-B'enard convection using a lattice Boltzmann method, Physical Review E, Vol. 55, pp. 2780-2788, The American Physical Society, 1997.

X. He, S. Chen, G.D. Doolen, A novel thermal model for the lattice Boltzmann method in incompressible limit, Journal of Computational Physics, Vol. 146, pp. 282-300, 1998.

S. Chen, G.D. Doolen, Lattice Boltzmann Method for Fluid Flows, Annual Review of Fluid Mechanics, Vol. 30, pp. 329-364, 1998.

X. Frank, G. Almeida, P. Perre, Multiphase flow in the vascular system of wood: From microscopic exploration to 3-D Lattice Boltzmann experiments, International Journal of Multiphase Flow, Vol. 36, pp. 599-607, 2010.

P. Yuan, L. Schaefer, Equations of State in a lattice Boltzmann model, Physics of Fluids, Vol. 18, 2006.

J. Harting, J. Chin, V. Maddalena, P. Coveney, Large-scale lattice Boltzmann simulations of complex fluids: advances through the advent of computational Grids, Philosophical Transactions of the Royal Society A, Vol. 363, pp. 1895-1915, 2005.

P. Yuan, L. Schaefer, A Thermal Lattice Boltzmann Two-Phase Flow Model and its Application to Heat Transfer Problems-Part 1. Theoretical Foundation, Journal of Fluid Engineering, vol. 128, pp. 142-150, 2006.

Munir, F.A., Azmi, M.I.M., Zin, M.R.M., Salim, M.A., Sidik, N.A.C., Application of lattice boltzmann method for lid driven cavity flow, (2011) International Review of Mechanical Engineering (IREME), 5 (5), pp. 856-861.

Shahriari, A.R., Jafari, S., Rahnama, M., Behzadmehr, A., Effect of nanofluid variable properties on natural convection in a square cavity using Lattice Boltzmann Method, (2013) International Review of Mechanical Engineering (IREME), 7 (3), pp. 442-452.

M. Stiebler, M. Krafczyk, S. Freudiger, M. Geier, Lattice Boltzmann large eddy simulation of subcritical flows around a sphere on non-uniform grids, Computers & Mathematics with Applications, Vol. 61, n. 12, pp. 3475-3484, 2011.

R. Khazaeli, S. Mortazavi, M. Ashrafizaadeh, Application of a ghost fluid approach for a thermal lattice Boltzmann method, Journal of Computational Physics, Vol. 250, pp. 126-140, 2013.

F.E. Mackay, C. Denniston, Coupling MD particles to a lattice-Boltzmann fluid through the use of conservative forces, Journal of Computational Physics, Vol. 237, pp. 289-298, 2013.

M.A. Mussa, S. Abdullah, C.S. Nor Azwadi, N. Muhamad, Simulation of natural convection heat transfer in an enclosure by the lattice-Boltzmann method, Computers & Fluids, Vol. 44, n. 1, pp. 162-168, 2011.

S. Donath, K. Mecke, S. Rabha, V. Buwa, U. Rüde, Verification of surface tension in the parallel free surface lattice Boltzmann method in waLBerla, Computers & Fluids, Vol. 45, n. 1, pp. 177-186, 2011.

P.V. Thang, B. Chopard, L. Lefèvre, D.A. Ondo, E. Mendes, Study of the 1D lattice Boltzmann shallow water equation and its coupling to build a canal network, Journal of Computational Physics, Vol. 229, n. 19, pp. 7373-7400, 2010.

A. Caiazzo, M. Junk, M. Rheinländer, Comparison of analysis techniques for the lattice Boltzmann method, Computers & Mathematics with Applications, Vol. 58, n. 5, pp. 883-897, 2009.

C.D. Bohn, S.A. Scott, J.S. Dennis, C.R. Müller, Validation of a lattice Boltzmann model for gas–solid reactions with experiments, Journal of Computational Physics, Vol. 231, n. 16, pp. 5334-5350, 2012.

X. Kang, Q. Liao, X. Zhu, Y. Yang, Non-equilibrium extrapolation method in the lattice Boltzmann simulations of flows with curved boundaries (non-equilibrium extrapolation of LBM), Applied Thermal Engineering, Vol. 30, n. 13, pp. 1790-1796, 2010.

M. Basha, C.S. Nor Azwadi, Regularized lattice Boltzmann simulation of laminar mixed convection in the entrance region of 2-D channels, Numerical Heat Transfer; Part A: Applications, Vol. 63 n. 11, pp. 867-878, 2013.

S.L. Han, P. Zhu, Z.Q. Lin, Two-dimensional interpolation-supplemented and Taylor-series expansion-based lattice Boltzmann method and its application, Communications in Nonlinear Science and Numerical Simulation, Vol. 12, n. 7, pp. 1162-1171, 2007.

C.S. Nor Azwadi, L. Jahanshaloo, Computational analysis of particulate flow in expansion channel, American Journal of Applied Sciences, Vol. 10, n. 4, pp. 388-394, 2013.

E. Vergnault, P. Sagaut, Application of Lattice Boltzmann Method to sensitivity analysis via complex differentiation, Journal of Computational Physics, Vol. 230, n. 13, pp. 5417-5429, 2011.

C. C. Chang, Y.T. Yang, T.H. Yen, C.K. Chen, Numerical investigation into thermal mixing efficiency in Y-shaped channel using Lattice Boltzmann method and field synergy principle, International Journal of Thermal Sciences, Vol. 48, n. 11, pp. 2092-2099, 2009.

K. Han, Y.T. Feng, D.R.J. Owen, Modelling of thermal contact resistance within the framework of the thermal lattice Boltzmann method, International Journal of Thermal Sciences, Vol. 47, n. 10, pp. 1276-1283, 2008.

C.S. Nor Azwadi, M. Razzaghian, M. Pourtousi, A. Safdari, Numerical prediction of free convection in an open ended enclosure using lattice Boltzmann numerical method, International Journal of Mechanical and Materials Engineering, Vol. 8, n. 1, pp. 58-62, 2013.

J. Wang, D. Wang, P. Lallemand, L.S. Luo, Lattice Boltzmann simulations of thermal convective flows in two dimensions, Computers & Mathematics with Applications, Vol. 65, n. 2, pp. 262-286, 2013.

C.H. Liu, K.H. Lin, H.C. Mai, C.A. Lin, Thermal boundary conditions for thermal lattice Boltzmann simulations, Computers & Mathematics with Applications, Vol. 59, n. 7, pp. 2178-2193, 2010.

S. Chen, Z. Tian, Simulation of thermal micro-flow using lattice Boltzmann method with Langmuir slip model, International Journal of Heat and Fluid Flow, Vol. 31, n. 2, pp. 227-235, 2010.

C.S. Nor Azwadi, M.H. Al-Mola, S. Agus, Numerical investigation on shear driven cavity flow by the constrained interpolated profile lattice Boltzmann method, WSEAS Transactions on Mathematics, Vol. 12, n. 4, pp. 426-435, 2013.

C.S. Nor Azwadi, L. Jahanshaloo, Lattice Boltzmann numerical scheme for transient hydrodynamics of solid particles in an enclosure, CFD Letters, Vol. 4, n. 3, pp. 102-111, 2012.

Z.W. Tian, C. Zou, H.J. Liu, Z.L. Guo, Z.H. Liu, C.G. Zheng, Lattice Boltzmann scheme for simulating thermal micro-flow, Physica A: Statistical Mechanics and its Applications, Vol. 385, n. 1, pp. 59-68, 2007.

C.S. Nor Azwadi, M.S. Idris, Mesoscale numerical approach to predict macroscale fluid flow problems, Journal of Applied Sciences, Vol. 10, n. 15 , pp. 1511-1524, 2010.

M. Markl, R. Ammer, U. Ljungblad, U. Rüde, C. Körner, Electron Beam Absorption Algorithms for Electron Beam Melting Processes Simulated by a Three-Dimensional Thermal Free Surface Lattice Boltzmann Method in a Distributed and Parallel Environment, Procedia Computer Science, Vol. 18, pp. 2127-2136, 2013.

L. Zheng, Z. Guo, B. Shi, C. Zheng, Kinetic theory based lattice Boltzmann equation with viscous dissipation and pressure work for axisymmetric thermal flows, Journal of Computational Physics, Vol. 229, n. 16, Pages 5843-5856, 2010.

S. Chen, K.H. Luo, C. Zheng, A simple enthalpy-based lattice Boltzmann scheme for complicated thermal systems, Journal of Computational Physics, Vol. 231, n. 24, pp. 8278-8294, 2012.

C.S. Nor Azwadi, I.M. Sahat, Finite Difference and Cubic Interpolated Profile Lattice Boltzmann Method for Prediction of Two-Dimensional Lid-Driven Shallow Cavity Flow, Arabian Journal for Science and Engineering, Vol. 37, n. 4, pp. 1101-1110, 2012.

L. Zheng, B. Shi, Z. Guo, C. Zheng, Lattice Boltzmann equation for axisymmetric thermal flows, Computers & Fluids, Vol. 39, n. 6, pp. 945-952, 2010.

F.A. Munir, C.S. Nor Azwadi, N.I.N. Ibrahim, Numerical simulation of natural convection in an inclined square cavity, Journal of Applied Sciences, Vol. 11, n. 2, pp. 373-378, 2011.

K.H. Lin, C.C. Liao, S.Y. Lien, C.A. Lin, Thermal lattice Boltzmann simulations of natural convection with complex geometry, Computers & Fluids, Vol. 69, pp. 35-44, 2012.

C. Obrecht, F. Kuznik, B. Tourancheau, J.J. Roux, The TheLMA project: A thermal lattice Boltzmann solver for the GPU, Computers & Fluids, Vol. 54, pp. 118-126, 2012.

Z. Hashemi, O. Abouali, R. Kamali, Thermal three-dimensional Lattice Boltzmann simulations of suspended solid particles in microchannels, International Journal of Heat and Mass Transfer, Vol. 65, pp. 235-243, 2012.

O.S. Azmir, C.S. Nor Azwadi, UTOPIA finite different lattice Boltzmann method for simulation natural convection heat transfer from a heated concentric annulus cylinder, European Journal of Scientific Research, Vol. 38, n. 1, pp. 63-71, 2009.

L. Chen, Q. Kang, Y.L. He, W.Q. Tao, Pore-scale simulation of coupled multiple physicochemical thermal processes in micro reactor for hydrogen production using lattice Boltzmann method, International Journal of Hydrogen Energy, Vol. 37, n. 19, pp. 13943-13957, 2012.

C.S. Nor Azwadi, M.R.M. Zin, Modelling of the dynamics of a droplet using the lattice Boltzmann method, International Journal of Mechanical and Materials Engineering, Vol.5, n. 2, pp. 276-281, 2010.

D. Yadav, R. Bhargava, G.S. Agrawal, Boundary and internal heat source effects on the onset of Darcy–Brinkman convection in a porous layer saturated by nanofluid, International Journal of Thermal Sciences, Vol. 60, pp. 244-254, 2012.

R. Chand, G.C. Rana, On the onset of thermal convection in rotating nanofluid layer saturating a Darcy–Brinkman porous medium, International Journal of Heat and Mass Transfer, Vol. 55, n. 21–22, pp. 5417-5424, 2012.

S. Kadri, R. Mehdaoui, M. Elmir, A Vertical Magneto-Convection in Square Cavity Containing A Al2O3+Water Nanofluid: Cooling of Electronic Compounds, Energy Procedia, Vol. 18, pp. 724-732, 2012.

M. Elmir, R. Mehdaoui, A. Mojtabi, Numerical Simulation of Cooling a Solar Cell by Forced Convection in the Presence of a Nanofluid, Energy Procedia, Vol. 18, pp. 594-603, 2012.

D. Yadav, R. Bhargava, G.S. Agrawal, Numerical solution of a thermal instability problem in a rotating nanofluid layer, International Journal of Heat and Mass Transfer, Vol. 63, pp. 313-322, 2013.

M. Shahi, A.H. Mahmoudi, F.Talebi, Numerical study of mixed convective cooling in a square cavity ventilated and partially heated from the below utilizing nanofluid, International Communications in Heat and Mass Transfer, Vol. 37, n. 2, pp. 201-213, 2010.

E.A. Nada, H.F. Oztop, I. Pop, Buoyancy induced flow in a nanofluid filled enclosure partially exposed to forced convection, Superlattices and Microstructures, Vol. 51, n. 3, pp. 381-395, 2012.

Y. Nor Azizah, I. Anuar, N. Roslinda, I. Pop, Falkner–Skan problem for a static and moving wedge with prescribed surface heat flux in a nanofluid, International Communications in Heat and Mass Transfer, Vol. 38, n. 2, pp. 149-153, 2011.

H.F. Oztop, M. Mobedi, E. Abu-Nada, I. Pop, A heatline analysis of natural convection in a square inclined enclosure filled with a CuO nanofluid under non-uniform wall heating condition, International Journal of Heat and Mass Transfer, Vol. 55, n. 19–20, pp. 5076-5086, 2012.

L. Zhou, Y. Xuan, Q. Li, Multiscale simulation of flow and heat transfer of nanofluid with lattice Boltzmann method, International Journal of Multiphase Flow, Vol. 36, n. 5, pp. 364-374, 2010.

Y. Xuan, Z. Yao, Lattice Boltzmann Model for Nanofluids, Heat and Mass Transfer, pp. 199–205, 2004.

H. Nemati, M. Farhadi, K. Sedighi, E. Fattahi, A.A.R. Darzi, Lattice Boltzmann Simulation of Nanofluid in Lid-driven Cavity, International Communications in Heat and Mass Transfer, Vol. 37, n. 10, pp. 1528–1534, 2010.

Gh.R. Kefayati, S.F. Hosseinizadeh, M. Gorji, H. Sajjadi, Lattice Boltzmann Simulation of Natural Convection in Tall Enclosures Using water/SiO2 Nanofluid, International Communications in Heat and Mass Transfer, Vol. 38, n. 6, pp. 798–805, 2011.

F.H. Lai , Y. T. Yang, Lattice Boltzmann Simulation of Natural Convection Heat Transfer of Al2O3/water Nanofluids in a Square Enclosure, International Journal of Thermal Sciences, Vol. 50, n. 10, pp. 1930–1941, 2011.

M. Nabavitabatabayi, E. Shirani, M.H. Rahimian, Investigation of Heat Transfer Enhancement in an Enclosure Filled with Nanofluids Using Multiple Relaxation Time Lattice Boltzmann Modeling, International Communications in Heat and Mass Transfer, Vol. 38, n. 1, pp.128–138, 2011.

G.H.R. Kefayati, S.F. Hosseinizadeh, M. Gorji, H. Sajjadi, Lattice Boltzmann Simulation of Natural Convection in an Open Enclosure Subjugated to Water/copper Nanofluid, International Journal of Thermal Sciences, Vol. 52, pp. 91–101, 2012.

E. Fattahi, M. Farhadi, K. Sedighi, H. Nemati, Lattice Boltzmann Simulation of Natural Convection Heat Transfer in Nanofluids, International Journal of Thermal Sciences, Vol. 52, pp. 137–144, 2012.

Y. Guo, D. Qin, S. Shen, R. Bennacer, Nanofluid Multi-phase Convective Heat Transfer in Closed Domain: Simulation with Lattice Boltzmann Method, International Communications in Heat and Mass Transfer, Vol. 39, n. 3, 350–354, 2012.

C. Qi, Y.He, S. Yan, F. Tian, Y. Hu, Numerical Simulation of Natural Convection in a Square Enclosure Filled with Nanofluid Using the Two-phase Lattice Boltzmann Method, Nanoscale research letters, Vol. 8 , n. 1, pp. 56, 2013.

Gh.R. Kefayati, ‘Effect of a Magnetic Field on Natural Convection in an Open Cavity Subjugated to Water/alumina Nanofluid Using Lattice Boltzmann Method’, International Communications in Heat and Mass Transfer, Vol. 40 , pp. 67–77, 2013.

C.S. Nor Azwadi, M. Khakbaz, L. Jahanshaloo, S. Syahrullail and D. Amer Nordin, Simulation of Forced Convection in a Channel with Nanofluid by the Lattice Boltzmann Method, Nanoscale research letters, Vol. 8, pp. 178, 2013.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize