Cycle Efficiency Optimization for ORC Solar Plants


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


Organic Rankine Cycle plants have been becoming an interesting chance to convert solar energy into electrical energy, when working at not very high temperature levels. Global efficiency of such plants depends on several factors, including mirror optics, receiver tube thermal losses, fluid working cycle, mechanical-electrical conversion. The paper investigates particularly about cycle efficiency and its optimization varying both organic fluid and efficiency improving techniques, as regeneration or reheat. The analysis has been performed evaluating the cycle efficiency in a lot of cases, comparing each other. Results are critically presented, offering a decisional tool when designing an ORC solar plant for medium temperature levels.
Copyright © 2013 Praise Worthy Prize - All rights reserved.

Keywords


Organic Rankine Cycle; Solar Energy

Full Text:

PDF


References


Hettiarachchi HDM, Golubovic M, Worek WM, Ikegami Y. Optimum design criteria for an organic Rankine cycle using low-temperature geothermal heat sources. Energy 2007;32:1698–706.

Borsukiewicz-Gozdur A, Nowak W. Maximising the working fluid flow as away of increasing power output of geothermal power plant. ApplTherm Eng2007;27:2074–8.

Wei D, Lu X, Lu Z, Gu J. Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery. Energy Convers Manage 2007;48:1113–9.

Liu BT, Chien KH, Wang CC. Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy 2004;29:1207–17.

Invernizzi C, Iora P, Silva P. Bottoming micro-Rankine cycles for micro-gas turbines. ApplThermEng 2007;27:100–10.

Drescher U, Brüggemann D. Fluid selection for the organic Rankine cycle (ORC)in biomass power and heat plants. ApplThermEng 2007;27:223–8.

Delgado-Torres AM, Garcia-Rodriguez L. Preliminary assessment of solar organic Rankine cycles for driving a desalination system. Desalination 2007;216:252–75.

Delgado-Torres AM, Garcia-Rodriguez L. Comparison of solar technologies for driving a desalination system by means of an organic Rankine cycle. Desalination 2007;216:276–91.

Delgado-Torres AM, Garcia-Rodriguez L. Double cascade organic Rankine cycle for solar-driven reverse osmosis desalination. Desalination 2007;216:306–13.

Delgado-Torres AM, Garcia-Rodriguez L, Romero-Ternero VJ. Preliminary design of a solar thermal-powered seawater reverse osmosis system. Desalination 2007;216:292–305.

Wang XD, Zhao L. Analysis of zeotropic mixtures used in low-temperature solar Rankine cycles for power generation. Solar Energy 2009;83:605–13.

Kosmadakis G, Manolakos D, Kyritsis S, Papadakis G. Comparative thermodynamic study of refrigerants to select the best for use in the high temperature stage of a two-stage organic Rankine cycle for RO desalination. Desalination 2009;243:74–94.

Tchanche BF, Papadakis G, Lambrinos G, Frangoudakis A. Fluid selection for a low-temperature solar organic Rankine cycle. ApplThermEng 2009;29:2468–76.

Wolpert JL, Riffat SB. Solar-powered Rankine system for domestic applications. ApplThermEng 1996;16:281–9.

Delgado-Torres AM. Diseñopreliminar de un sistema de desalación por ósmosis inversa mediante energía solar térmica. Academic thesis, Departamento de Física Fundamental y Experimental, Electrónica y Sistemas, Universidad de La Laguna, 2006. ISBN 978-84-7756-740-0.

Delgado-Torres AM, Garcia-Rodriguez L. Status of solar thermal-driven reverseosmosis desalination. Desalination 2007;216:242–51.

Delgado-Torres AM. Solar thermal heat engines for water pumping: an update. Renew Sustain Energy Rev 2009;13:462–72.

OSMOSOL project website. https://www.psa.es/webeng/projects/joomla/osmosol/> [accessed 12.09.09].

Bruno JC, Lopez-Villada J, Letelier E, Romera S, Coronas A. Modelling and optimisation of solar organic Rankine cycle engines for reverse osmosisdesalination. ApplThermEng 2008;28:2212–26.

POWERSOL project website. accessed 12.09.09].

Garcia-Rodriguez L, Blanco-Galvez J. Solar-heated Rankine cycles for water and electricity production: POWERSOL project. Desalination 2007;212:311–8.

Duffie JA, Beckman WA. Solar engineering of thermal process. 2nd ed. New York: John Wiley; 1991.

Wagner W, Pruss A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J PhysChem Ref Data 2002;31:387–535.

Miyamoto H, Watanabe K. A thermodynamic property model for fluid-phasepropane. Int J Thermophys 2000;21:1045–72.

International Chemical Safety Cards. [accessed 12.09.09].

Federal Register Environmental Documents. http://www.epa.gov/EPA-AIR/[accessed 12.09.09].

Tillner-Roth R, Baehr HD. an international standard formulation for the thermodynamic properties of 1, 1, 1, 2-tetrafluroethane (Hfc-134a) for temperatures from 170-K to 455-K and pressures up to 70-Mpa. J PhysChem Ref Data 1994;23:657–729.

DuPont. http://www2.dupont.com/Directories/en_US/Products_Services_Index/index.html> [accessed 12.09.09].

WMO (World Meteorological Organization). Scientific assessment of ozone depletion: 2006. Global ozone research and monitoring project—report,Geneva, Switzerland; 2007.

Lemmon EW, Span R. Short fundamental equations of state for 20 industrialfluids. J ChemEng Data 2006;51:785–850.

Outcalt SL, McLinden MO. A modified Benedict–Webb–Rubin equation of state for the thermodynamic properties of R152a (1, 1-difluoroethane). J PhysChem Ref Data 1996;25:605–36.

Gas Encyclopaedia of Air Liquide. [accessed12.09.09].

Tillner-Roth R, Harms Watzenberg F, Baehr HD. Eine Neue Fundamentalgleichung Für Ammoniak. DKV-Tagungsbericht 1993;20:167–81.

Quoilin S. Experimental study and modeling of a low temperature Rankine cycle for small scale cogeneration. Academic thesis, Thermodynamics Laboratory. Aerospace and Mechanical Engineering Department, Faculty of Applied Sciences, University of Liege; 2007.

Bucker D, Wagner W. Reference equations of state for the thermodynamic properties of fluid phase n-butane and isobutane. J PhysChem Ref Data2006;35:929–1019.

BOC GASES. Safety data sheet. [accessed 12.09.09].

Airgas. Material safety data sheet. [accessed 12.09.09].

Angelino G, Di Paliano PC. Multicomponent working fluids for organic Rankinecycles (ORCs). Energy 1998;23:449–63.

NIST Chemistry Webook. http://webbook.nist.gov/chemistry/fluid/[accessed 12.09.09].

Span R, Wagner W. Equations of state for technical applications. II. Results for nonpolar fluids. Int J Thermophys 2003;24:41–109.

Angelino G, Invernizzi C, Molteni G. The potential role of organic bottomingRankine cycles in steam power stations. Proc IME J Power Energy 1999;213:75–81.

Span R. Multiparameter equations of state. An accurate source of thermodynamic property data. 1st ed. Berlin: Springer-Verlag; 2000.

Gimelli, A., Luongo, A., Amoresano, A., Experimental data and thermodynamic analysis of biomass steam power plant with two different configurations plant, (2012) International Review of Mechanical Engineering (IREME), 6 (6), pp. 1109-1116.

Di Nardo A., Langella G., Mongiello C., Numerical analysis of exhaust gas flows from GT to HRSG for post-combustion optimisation, International Journal of Heat and Technology, 2006, 24 (2) pp. 69-74

The solar key mark collector database. accessed 12.09.09].

Stine WB, Geyer M. Power cycles for electricity generation, in: power from the sun.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize