Combined Processes: Laser Assisted Microwave Sintering of Alumina


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


The engineering applications of technical ceramics are generally related to microstructure-controlled properties. The main objective of processing is to produce the desired microstructure, which frequently involves obtaining high density and small grain size. In the present study hybrid heating technique, which combine direct microwave heating with laser heat sources was proposed to sinter alumina which is a poor absorber of microwaves at room temperature. With increasing temperature by absorbing laser radiation, alumina can absorb microwave energy. The aim of this work is to explore numerically the hybridization of laser and microwaves energies to achieve rapid sintering with controlled grains size, density and free cracks sample by minimizing the temperature gradient between the core and sample surface. The simulation use finites volumes method in FORTRAN program.
Copyright © 2013 Praise Worthy Prize - All rights reserved.

Keywords


Sintering; Microwave; Laser; Alumina; Grain Size

Full Text:

PDF


References


L. Sedel, A. Raould, (2007) Engineering aspect of alumina on alumina hip prosthesis, Proc. Inst. Mech. Eng. II. J. Eng. Med. 221, 21-27.

H. Wang, C. Tablet, A. Feldhoff, J. Caro, (2005) Investigation of phase structure sintering, and permeability of perovskite-type membrane, J. Membr. Sci., 262, 20-26.

A. Ibarra, E.R. Hodgson, (2004) The ITER project: the role of insulators, Nucl. Instrum. Meth. B 218-229.

F. J. T. Lin, L. C. de Jonghe, M. N. Rahaman, (1997) Microstructural Refinement of Sintered Alumina by a Two-Step Sintering Technique, J. Am. Ceram. Soc., 80 (9), 2269-2277.

P. Miranzo, L. Tabernero, J. S. Moya, and J. R. Jurado, (1990) Effect of sintering atmosphere on the densification and electrical properties of alumina, J. Am. Ceram. Soc., 73 (7), 2119-2121.

J. Perelaer, B.J. de Gans, U.S. Schubert, (2006) Ink-jet Printing and Microwave Sintering of Conductive Silver Tracks, Adv. Mater., 18 2101-2104.

D. E. Clark, W.H. Sutton, (1996) Microwave processing of materials, Annu. Rev. Mater. Sci., 26, 299-331.

D. Clark, W. Sutton, D. Lewis. (1997) Microwaves: theory and application in materials processing, Ceram. Trans., 80, 61-96.

J.Chung, S. Ko, N.R. Bieri, C.P. Grigoropoulos, D. Poulikakosa. (2004) Conductor microstructures by laser curing of printed gold nanoparticule ink, Appl. Phys. Lett., 84 (5), 801-803.

A. Khan, N. Rasmussen, V. Marinov, O.F. Svenson. (2008) Laser sintering of silver nano-materials on polymer substrates, Microelectronics and Electronic Packaging, 5, 77-86.

A.Khan, N. Rasmussen, O.F. Svenson, V. Marinov, (2008) Laser sintering of direct write silver nano-ink conductors for microelectronic applications, In: Proceedings of SPIE, vol. 6879.

S. Ko, H. Pan, C. Grigoropoulos, C. Luscombe, J. Frechet, D. Poulikakos. (2007) Air stable high resolution organic transistors by selective laser sintering of inkjet printed metal nanoparticles, Appl. Phys. Lett. 90, 141103.

R. Peelamedu, A.J. Badzian, and R. Roy, (2004) Sintering of Zirconia Nanopowder by Microwave-Laser hybrid process, J. Am. Ceram. Soc., 87 (9) 1806-1809.

D.L. Johnson, (1994) Microwave Processing of Ceramics at Northwestern University. in Ceramic Transactions, Vol. IV, 17-28.

W.E. Olmstead, M.E. Brodwin, (1997) A Model for Thermocouple Sensitivity During Microwave Heating, Int. J. Heat Mass Transfer, 40 (7), 1559-1565.

K. Bougrin, H. El Rhaleb, (2008) Laser-Microwave in Chemistry, in: M. Lackner (Eds.), Lasers in Chemistry: Probing and Influencing Matter, Edition Wiley-VCH, 2008, pp. 1165-1184.

P.D. Ramesh, D.G. Brandon, and L. Schachter, (1999) Synergistic effects in microwave-laser hybridation and its application to ceramics sintering, Mater. Sci. Eng., A, 266 211-220.

A. De’I. Ahmad, E.D. Whitney, D.E. Clark, (1991) Microwave (hybrid) heating of alumina at 2.45 GHz: I. microstructural uniformity and homogeneity. in: D.E. Clark, F.D. Gac, W.H. Sutton (Eds.), Ceram. Trans. 21, The American Ceramic Society, Westerville, OH, , 319-328.

A. Birnboim, D. Gershon, J. Calame, A. Birman, Y. Carmel, J. Rodgers, and B. Levush, (1998) Comparative Study of Microwave Sintering of Zinc Oxide at 2.45, 30, and 83 GHz. J. Am. Ceram. Soc., 81 (6), 1493-501.

R. M. Hutcheon, M. S. De Jong, F. P. Adams, P. G. Lucuta, J. E. McGregor, and L. Bahen, “RF and Microwave Dielectric Measurements to 1400°C and Dielectric Loss Mechanisms,” Muter. Res. Soc. Symp. Proc., 269, 541 (1992)

B.S. Yilbas, S.S. Akhtar, C. Karatas, (2011) Laser carbonitriding of alumina surface, Opt. Lasers Eng. 49, 341-350.

Y.S. Touloukian, Thermophysical Properties of High Temperature Materials, IFI/Plenum, New York, 1967.

P. Auerkari, Mechanical and Physical Properties of Engineering AluminaCeramics, VTT Manufacturing Technology, Finland, 1996.

A. Birnboim and Y. Carmel, Simulation of Microwave Sintering of Ceramic Bodies withComplex Geometry, J. Am. Ceram. Soc., 82 [11] 3024–30 (1999).

S.J.L. Kang, Sintering, Densification, Grain Growth, and Microstructure (Elsevier Butterworth-Heinemann Edition, 2005).

R. M. Cannon, W. H. Rhodes and A. H. Heuer, (1980) Plastic deformation of fine-grained alumina (Al2O3): I, interface controlled diffusional creep, J. Am. Ceram. Soc., 63 (46), 46-53.

W. D. Kingery, (1954) Absolute measurements of metal-ceramic interfacial energies, J. Am. Ceram. Soc., 37, 42-45.

A. Chatterjee, T. Basak, and K. G. Ayappa, Analysis of Microwave Sintering of Ceramics, AIChE Journal, October 1998 Vol. 44, No. 10.

J. R. Welty, C. E. Wicks, and R. E. Wilson, Fundamental of Momentum, Heat and Mass Transfer. Wiley, New York (1976). (

L.A . Campanone, N.E. Zaritzky, (2005) Mathematical analysis of microwave heating process, J. Food Eng. 69, 359-368.

I.C. Popa, Modelisation numérique du transfert thermique – Methode des volumes finis, Universitaria Craiova, (2002).

J . Ferziger, c M . PeriT. Computational methods for fluid dynamics, 3rd ed. Berlin: Springer; 2002.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize