Analysis and Modeling of Heat Generation in Overcharged Li-Ion Battery with Passive Cooling


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


This paper presents a dynamic model for simulating the heat generation in Lithium batteries and an investigation of the heat transfer as well as the capacity of Phase Change Materials (PCM’s) to store energy inside a battery cell module when the battery is overcharged. The study is performed by coupling a one-dimensional model of the electrochemical processes with a two-dimensional model for the heat transfer in a cross section of a battery pack. The heat generation and subsequent temperature rise is analyzed for different charging currents for the two cases where the cell is air-cooled and passively cooled using a PCM, respectively. As expected, the results show that for high currents, the heat generation and implicitly the temperature increases. However, using a PCM the temperature increase is found to be limited allowing the battery to be overcharged to a certain degree. It is found that for fast charging, the charging time has a lower limit determined by the transport properties in the electrodes.
Copyright © 2013 Praise Worthy Prize - All rights reserved.

Keywords


Electrochemical Modeling; Heat Generation; Li-Ion Battery; Phase Change Materials; Speed-Charge; Thermal Modeling

Full Text:

PDF


References


www.batteryuniversity.com

S. Wittingham, Electrical energy storage and intercalation chemistry, Science,Vol 192, n. 4244, pp. 1126-1127, 1976.

K. Oates, Lithium-ion batteries: commercialization history and current market, Foresight Science & Technology, 2010.

D. Linden and T. B. Reddy, Handbook of Batteries(3rd Edition, McGraw-Hill Professional, 2001).

L. Song and J. W. Evans, Electrochemical-Thermal model of lithium polymer batteries, Journal of the Electrochemical Society, Vol. 147, n. 6, pp. 2086-2095, 2000.

W. B. Gu and C. Y. Wang, Thermal-Electrochemical Modeling of Battery Systems, Journal of the Electrochemical Society, Vol. 147, n. 8, pp. 2910-2922, 2000.

K. Kumaresan, G. Sikha and R. E. White, Thermal model for a Li-ion cell, Journal of the Electrochemical Society, Vol. 155, n. 2, pp. A164-A171, 2008.

L. Cai and R. E. White, An efficient electrochemical-thermal model for a lithium-ion cell by using the proper orthogonal decomposition method, Journal of the Electrochemical Society, Vol. 157, n. 11, pp. A1188-A1195, 2010.

D. Bharathan, A. Pesaran, G. Kim and A. Vlahinos, Electro-Thermal modeling to improve battery design, IEEE Vehicle Power and Propulsion, 2005 (Preprint)

R. Benger, H. Wenzl, H-P. Beck, M. Jiang, D. Ohms, G. Schaedlich, Electrochemical and thermal modeling of lithium-ion cells for use in HEV or EV application, World Electric Vehicle Journal, Vol. 3, ISSN 2032-6653, 2009.

S. A. Hallaj, H. Maleki, J. S. Hong and J. R. Selman, Thermal modeling and design consideration of lithium-ion batteries, Journal of Power Sources, Vol 83, n.1-2, pp. 1-8, 1999.

S. A. Hallaj, J. R. Selman, Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications, Journal of Power Sources, Vol 110, n.1-2, pp. 341-348, 2002.

S. A. Khateeb, M. M. Farid, J. R. Selman and S. A. Hallaj, Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter, Journal of Power Sources, Vol. 128, n.1-2, pp. 292-307, 2004.

S. A. Khateeb, S. Amiruddin, M.M. Farid, J. R. Selman and S. A. Hallaj, Thermal Managemenet of li-ion battery with phase change material for electric scooters: experimental validation, Journal of Power Sources, Vol. 142, n. 1-2, pp. 345-353, 2005.

Batteries & Fuel Cells Module, Comsol’s User Guide.

D. di Domenico, A. Stefanaopoulou, G. Fiengo, Lithium-Ion Battery State of Charge and Critical Surface Charge Estimation Using an Electrochemical Model-Based Extended Kalman Filter, Journal of Dynamic Systems, Measure and Control, Vol. 132, n. 6, pp. 61302-61313, 2010.

J. Nanda, J. Remillard, Ann O’neill, D. Bernardi, T. Ro, K. E. Nietering, J-Y Go and Ted Miller, Local State-of-Charge mapping of Lithium-ion battery electrodes, Advanced functional materials, Vol 21, n. 17, pp. 3282-3290, 2011.

S. Santhanagopalan, Q. Zhang, K. Kumaresan and R. E. White, Parameter estimation and life modelling of lithium-ion cells, Journal of the Electrochemical Society, Vol 155, n.4, pp.A345-A353, 2008.

M. Oswald, J. Paul and R. Zhao, A comparative study of Lithium-ion batteries (University of Southern California, 2010).

M. C. Niculuta and C. Veje, Analysis of the thermal behaviour of a LiFePO4 battery cell, Journal of Physics: Conf. ser 395, 2012.

M. C. Niculuta, Battery cell thermal measurements activity report, August 2011.

K. E. Thomas and Newman, Thermal modeling of porous insertion electrodes, Journal of the Electrochemical Society, Vol 150, n. 2, pp. 176-192.

M. Doyle, J. Newman, A. S. Gozdz, C. N. Schumtz and J-M. Tarascon, Comparison of modelling predictions with experimental data from plastic Lithium ion cells, Journal of Electrochemistry Society,Vol 143, No.6, pp. 1890-1903.

C. Forgez, D. V. Do, G. Friedrich, M. Morcrette, C. Delacourt, Thermal modelling of a cylindrical LiFePO4/graphite lithium-ion battery, Journal of Power Sources, Vol. 195, n. 9, pp. 2961-2968, 2010

J. Li, P. Xue, W. Ding, J. Han and G. Sun, Microencapsulated paraffin/high-density polyethylene/wood flour composite as form-stable phase change material for thermal energy storage, Solar Energy Materials & Solar Cells, Vol. 93, n. 10, pp. 1761-1767, 2009.

D. Lelea, Effects of inlet geometry on heat transfer and fluid flow of tangential micro-heat sink, International Journal of Heat and Mass Transfer, Vol. 53, n. 17-18, pp. 3562-3569, 2010.

http://www.rgees.com.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize