Open Access Open Access  Restricted Access Subscription or Fee Access

Methodology for the Static and Total Pressure Sensor Development Based on Elastic Sensing Elements and Linear CCD Matrices


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v16i1.21118

Abstract


Based on the Airworthiness Standards requirements, accuracy of air pressures measurements is strict. The air flow static and total pressure measurement instrumental errors should not exceed 0.02% and 0.05% of the measurement range with 95% probability. These requirements are ensured by original aerometric pressure sensor based on one-dimensional high sensitivity charge-coupled device considered in this article. Non-contact reception of signal and sensor vacuum durability has significantly increased the efficiency of measurement processes. The algorithm for calculating elastic sensitive elements basic design parameters in the most of entire standard size range and technical secondary transducer capabilities is considered in the article. The results of the experiments conducted by the authors and the results of the authors experimental studies listed in the references have confirmed the adequacy of theoretical methods for calculating the parameters of elastic elements for pressure sensors.
Copyright © 2022 Praise Worthy Prize - All rights reserved.

Keywords


Aerometric Pressure Sensors; Elastic Sensing Element; Incident Air Flow Pressure; Linear CCD

Full Text:

PDF


References


Julien Philippe, Maria Valeria de Paolis, Cristina Arenas-Buendia, et al.. Passive and Chipless Packaged Transducer for Wireless Pressure Measurement. Sensors and Actuators A: Physical, Elsevier, 2018, 279, pp.753-762.
https://doi.org/10.1016/j.sna.2018.06.024

Antonets I. V., Gorshkov G. M., Borisov R.A. Aerometricheskij datchik davleniya, ispol'zuyushchij opticheskij metod preobrazovaniya informacii [Aerometric pressure sensor using an optical information conversion method]. Patent RF, no. 2653596, 2018.

Lebed'ko E. G., Zvereva E. N., Nguen Vu Tung. Vysokotochnoe opredelenie uglovogo polozhenija tochechnogo istochnika izluchenija s PZS-linejkami [High-precision determination of the angular position of a point radiation source from a line of photoelectronic elements]. Nauchno-tehnicheskij vestnik informacionnyh tehnologij, mehaniki i optiki [Scientific and Technical Bulletin of Information Technologies, Mechanics and Optics], 2015, Vol. 15, no. 3, pp. 398-404. (in Russian).
https://doi.org/10.17586/2226-1494-2015-15-3-398-404

Bilizhenko I. V., Volkhonskiy V. V., Vorobyov P. A., Malyshkin S. L. Formirovanija diagramm napravlennosti optiko-jelektronnyh izveshhatelej na osnove mnogojelementnyh priemnikov IK izluchenija [Formation of directionaldiagrams of passive infrared detectors based on multi-element receivers of IR radiation]. Izv. vuzov. Priborostroenie [News of higher educational institutions. Instrumentation], 2017, Vol. 60, no. 1. pp. 96-99 (in Russian).
https://doi.org/10.17586/0021-3454-2017-60-1-96-99

Panov D.YU. O bol'shih progibah kruglyh membran so slabym gofrom [On large deflections of round membranes with a weak corrugation]. Prikladnaya mekhanika i matematika [Applied mechanics and mathematics], 1941, vol. 5, no. 2, pp. 303-318 (in Russian).

Feodosyev V.I. O bol'shih progibah i ustojchivosti krugloj membrany s melkoj gofrirovkoj [On large deflections and stability of a round membrane with fine corrugation]. Prikladnaya matematika i mekhanika [Applied mechanics and mathematics], 1945, no. 9, pp. 389-412 (in Russian).

Feodosev V.I. Uprugie elementy tochnogo priborostroeniya [Elastic elements of precision instrument making]. Moscow, State publishing house of defense literature Publ., 1949, 284 p. (in Russian).

Andreeva L.E. Raschet harakteristik gofrirovannyh membrane [Calculation of characteristics of corrugated membranes]. Priborostroenie [Instrument making], 1956, no. 3, pp. 11-17 (in Russian).

Andreeva L. E. Uprugie elementy priborov [Elastic elements of devices]. Moscow, Engineering Publ., 1980, 230 p. (in Russian).

Andreeva L.E. Raschet gofrirovannyh membrane [Calculation of corrugated membranes]. Raschety na prochnost v mashinostroenii [Strength calculations in mechanical engineering]. 1955, no. 46, pp. 55-67 (in Russian).

Ponomarev S. D., Andreeva L. E. Raschet uprugih elementov mashin i priborov [The calculation of the elastic elements of machines and devices]. Moscow, Engineering Publ., 1989, 792 p. (in Russian).

Borisov R.A., Antonec I. V. Programma dlja rascheta uprugih chuvstvitel'nyh jelementov datchikov ajerometricheskih davlenij [The program for calculating the elastic sensitive elements of air pressure sensors]. No. 2019663045, 2019.

Verkovich G. A., Golovenkin E. N., Golubkov V. A. Spravochnik konstruktora tochnogo priborostroeniya [Reference Designer precision instrumentation]. Leningrad, Engineering Publ., 1964, 460 p. (in Russian).

Litvina F.L. Spravochnik konstruktora tochnogo priborostroeniya [Reference Designer precision instrumentation]. Moscow, Engineering Publ., 1964, 460 p. (in Russian). Moscow, Engineering Publ., 1980, 326 p. (in Russian).

Felikson E. I. Uprugie elementy priborov [Elastic elements of devices]. Moscow, Engineering Publ., 1977, 311 p. (in Russian).

Asch G. Les capteurs en enstrumentation industrielle [Sensors in industrial instrumentation]. Lyon, 1991, 970 p.

Barber J. R. Elasticity, Second Edition. Kluwer, 2004, 431 p.

Borisov R.A., Antonec I. V. Programma upravleniya mikrokontrollerami semejstva STM32F4, obespechivayushchaya izmerenie linejnyh peremeshchenij chuvstvitel'nyh elementov datchikov, ispol'zuyushchih opticheskie preobrazovateli. Svidetel'stvo ob ofitsial'noi registratsii programm dlya EVM [The program for controlling microcontrollers of the STM32F4 family, providing measurement of linear displacements of sensitive elements of sensors using optical converters. The Certificate on Official Registration of the Computer Program]. No. 2019612079, 2019.

Pan'kov A.A., Pisarev P.V. Numerical modeling of electroelastic fields in the surface piezoelectric luminescent optical fiber sensor to diagnose deformation of composite plates. PNRPU Mechanics Bulletin, 2020, no. 2, pp. 64-77.
https://doi.org/10.15593/perm.mech/2020.2.06

Arango JD, Vélez YA, Aristizabal VH, Vélez FJ, Gómez JA, Quijano JC, Herrera-Ramirez J. Numerical study using finite element method for the thermal response of fiber specklegram sensors with changes in the length of the sensing zone. Computer Optics 2021; 45(4): 534-540.
https://doi.org/10.18287/2412-6179-CO-852

Mohammadi, M., Kiani-Oshtorjani, M., Mikkola, A., The Effects of Oil Entrained Air on the Dynamic Performance of a Hydraulically Driven Multibody System, (2020) International Review on Modelling and Simulations (IREMOS), 13 (4), pp. 214-222.
https://doi.org/10.15866/iremos.v13i4.18612

Bielawski, R., Rządkowski, W., Kowalik, M., Kłonica, M., Safety of Aircraft Structures in the Context of Composite Element Connection, (2020) International Review of Aerospace Engineering (IREASE), 13 (5), pp. 159-164.
https://doi.org/10.15866/irease.v13i5.18805

Auersvald, Jan & Draxler, Karel. (2015). Aerometric system for general aviation. 1-6.
https://doi.org/10.1109/MILTECHS.2015.7153718

Konovalov Roman (2015) Digital methods and algorithms for improving the accuracy of secondary transducers of parametric pressure sensors, Cand.Sci Dissertation, Yuri Gagarin State Technical University of Saratov, 2015., 125 p. (in Russian).

Belov V, Vinokurov L, Gavrilov V, Kozhevnikov V, Kuznetsov I, Makarov N, Sorokin M, Frequency pressure sensor, Patent №RU 123143 U1, 2012

Belozubov E, Belozubova N, Vasiliev V, Pressure sensor with vibration-resistant nano- and microelectromechanical system, Patent № RU 2 432 556 C1, 2011

Tikhonenkov V, Sorokin M. Method of compensating multiplicative temperature error of a sensor with a vibrating element, Bulletin of the Ulyanovsk State Technical University, no. 2 (34), 2006, pp. 40-43.

Ciarlet, Philippe. (2005). An Introduction to Differential Geometry with Applications to Elasticity. Journal of Elasticity. 78-79. 1-215.
https://doi.org/10.1007/s10659-005-4738-8

Elbestawi, M.A. Force measurement. In The Measurement, Instrumentation and Sensors Handbook; Webster, J.G., Ed.; CRC Press: Boca Raton, FL, USA, 1999; pp. 23.1-23.17.
https://doi.org/10.1201/9780415876179.ch23

Gong, Shih-Chin & Lee, Chengkuo. (2002). Analytical Solutions of Sensitivity for Pressure Microsensors. Sensors Journal, IEEE. 1. 340 - 344.
https://doi.org/10.1109/7361.983474

Nyce, David S.. Linear position sensors: theory and application" (2004).
https://doi.org/10.1002/0471474282

Rieger, Marc Oliver. "A model for hysteresis in mechanics using local minimizers of Young measures." (2005).

Borisov R., Antonec I, Method for measuring the amount of deflection of an elastic sensing element that measures static pressure II International Correspondence Scientific and Practical Conference of BSAA "Aviation: History, Modernity, Prospects for Development" November 9-10, 2017 (in Russian).

Szabo, S., Vajdova, I., Jencova, E., Blasko, D., Rozenberg, R., Mikula, B., Fire Risk Assessment of Composite Materials in Aviation by Hazard Levels Characterized in Standard EN 45545, (2020) International Review of Aerospace Engineering (IREASE), 13 (5), pp. 182-188.
https://doi.org/10.15866/irease.v13i5.17697

Bielawski, R., Rządkowski, W., Kowalik, M., Kłonica, M., Safety of Aircraft Structures in the Context of Composite Element Connection, (2020) International Review of Aerospace Engineering (IREASE), 13 (5), pp. 159-164.
https://doi.org/10.15866/irease.v13i5.18805

Fioriti, M., Vercella, V., A Parametric Cost Model for Estimating Civil Aircraft Line and Base Maintenance, (2019) International Review of Aerospace Engineering (IREASE), 12 (6), pp. 250-260.
https://doi.org/10.15866/irease.v12i6.17333


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize