The Organization of Built-in Hardware-Level Mutual Self-Test in Mesh-Connected VLSI Multiprocessors


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


In the present paper, a new hardware-level approach is proposed, which makes it possible to concurrently detect faulty units across a mesh-connected VLSI multiprocessor based on recurring mutual physical neighbor test actions and making faulty/non-faulty decisions using the majority operator.
Copyright © 2015 Praise Worthy Prize - All rights reserved.

Keywords


Mesh-Connected VLSI Multiprocessors; Reliability; Fault Tolerance; Hardware-Level Test; Mutual Test; Majority Operator

Full Text:

PDF


References


TILE-Gx8072 Processor. Product Brief Overview, Tilera Corp. 2014. http://www.tilera.com/sites/default/files/productbriefs/TILE-Gx8072_PB041-04_WEB.pdf

Alasha'ary, H., Matrouk, K., Al-Hasanat, A., Alqadi, Z., Al-Shalabi, H., Improving Matrix Multiplication Using Parallel Computing, (2013) International Journal on Information Technology (IREIT), 1 (6), pp. 346-349.

Avizienis A., Fault-tolerant systems // IEEE Transactions on Computers, Vol. C-25, No.12, Dec. 1976. PP. 1304-1312.
http://dx.doi.org/10.1109/tc.1976.1674598

Iyengar V.S., Kinney L.L., Concurrent Fault Detection in Microprogrammed Control Units // IEEE Transactions on Computers, Vol. C-34, No.9, Sept. 1985. PP. 810-821.
http://dx.doi.org/10.1109/tc.1985.1676637

Lala P., Self-checking and Fault-Tolerant Digital Design. Morgan Kaufmann Publishers, San-Francisco/San-Diego/New-York/Boston/London/Sydney/Tokyo, 2000.

Demidenko S., Levine E., Piuri V., and Gupta G.S., Fault-Tolerance in Micro Programmed Control: Architectures & Schematic Synthesis // Proc. IMTC 2005 – Instrumentation and Measurement Technology Conference, Ottawa, Canada, 17-19 May 2005. PP. 305-310.
http://dx.doi.org/10.1109/imtc.2005.1604123

Tsuda N., Shimizu T., Reconfigurable Mesh-Connected Processor Arrays Using Row-Column Bypassing and Direct Replacement // Proc. 2000 International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN '00) Dallas/Richardson, Texas, USA, December 07. PP. 24.
http://dx.doi.org/10.1109/ispan.2000.900256

Takanami I. Built-in self-reconfiguring systems for fault tolerant mesh-connected processor arrays by direct spare replacement // Proc. IEEE Intl Symp. Defect and Fault Tolerance in VLSI Systems, 24-26 Oct. 2001. IEEE, 2001. PP. 134-142.
http://dx.doi.org/10.1109/dftvs.2001.966762

Fukushi M., Horiguchi S., Reconfiguration Algorithm for Degradable Processor Arrays Based on Row and Column Rerouting // Proc. IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems, Cannes, France, October 10-13, 2004. pp. 496-504.
http://dx.doi.org/10.1109/dftvs.2004.1347875

Roychowdhury, V.P. ; Bruck, J. ; Kailath, T. Efficient algorithms for reconfiguration in VLSI/WSI arrays. Transactions on Computers, IEEE, Volume: 39, Issue: 4, 1990 , pp. 480- 489.
http://dx.doi.org/10.1109/12.54841

S.M.A.H. Jafri, S.J. Piestrak, O. Sentieys, S. Pillement. Design of the coarse-grained reconfigurable architecture DART with on-line error detection. Microprocessors and Microsystems, Volume 38, Issue 2, 2014, pp. 124-136.
http://dx.doi.org/10.1016/j.micpro.2013.12.004

Huicong Wu, Shanghe Liu, Qiang Zhao, Guoqing Wang. Research of Evolvable Hardware Technology in Improving the Reliability of VLSI Working in Extreme EMI Environment. Recent Developments in Applied Electrostatics, 2004, pp. 252-255.
http://dx.doi.org/10.1016/b978-008044584-7.50065-7

A. Noore, H. Nariman, M.A. Manzoul. Design of reconfigurable fault-tolerant VLSI/WSI processor array structures. Microelectronics Reliability, Volume 31, Issues 2–3, 1991, pp. 481-489.
http://dx.doi.org/10.1016/0026-2714(91)90234-x

Ramalingam Sridhar, Terry Jones. VLSI in biomedical imaging systems. Computerized Medical Imaging and Graphics, Volume 19, Issue 1, 1995, pp. 161-169.
http://dx.doi.org/10.1016/0895-6111(94)00037-9

P. Pirsch. VLSI Implementation Strategies. Advances in Image Communication, Volume 2, 1993, pp. 49-68.
http://dx.doi.org/10.1016/b978-0-444-88790-0.50008-3

Lars Bengtsson, Kenneth Nilsson, Bertil Svensson. A processor array module for distributed, massively parallel, embedded computingOriginal Research Article. Microprocessing and Microprogramming, Volume 38, Issues 1–5, 1993, pp. 529-537.
http://dx.doi.org/10.1016/0165-6074(93)90192-n

M. Nicolaidis, L. Anghel. Concurrent checking for VLSI. Microelectronic Engineering, Volume 49, Issues 1–2, 1999, pp. 139-156.
http://dx.doi.org/10.1016/s0167-9317(99)00435-9

Michael Nicolaidis. On-line testing for VLSI: state of the art and trends. Integration, the VLSI Journal, Volume 26, Issues 1–2, 1998, pp. 197-209.
http://dx.doi.org/10.1016/s0167-9260(98)00028-5

P Fischer, A Jöns A self adjustment technique minimizing channel to channel variations in VLSI readout chips. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 374, Issue 2,21, 1996, pp. 210-214.
http://dx.doi.org/10.1016/0168-9002(96)00094-0

Hideo Fujiwara. Design for testability and built-in self-test for VLSI circuits. Microprocessors and Microsystems, Volume 10, Issue 3, 1986, pp. 139-147.
http://dx.doi.org/10.1016/0141-9331(86)90094-3

Wu Jigang, Thambipillai Srikanthan. An improved reconfiguration algorithm for degradable VLSI/WSI arrays. Journal of Systems Architecture, Volume 49, Issues 1–2, July 2003, pp. 23-31.
http://dx.doi.org/10.1016/s1383-7621(03)00041-9


Refbacks




Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize