Biomedical Signals Analysis Using the Empirical Mode Decomposition and Parametric and non Parametric Time-Frequency Techniques
(*) Corresponding author
DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)
Abstract
In this paper, the Empirical mode decomposition (EMD) technique is used, in a first time, to separate the artifact from the biomedical signals. The biomedical signals treated are electroencephalogram (EEG) and Electrocardiogram (ECG) for normal and abnormal patients. Analysis of EEG and ECG signals is a challenging problem due to the fact that the signals are multi-component and very non-stationary. Due to the nature of these signals, the time-frequency analysis is an important tool for representing the evolution of the frequential components of these biomedical signals over time. The time-frequency techniques used are the parametric, Periodogram and Capon methods, and non-parametric Smoothed Pseudo Wigner-Ville method. As a first step of analysis, the EMD technique is applied to eliminate the artifact from these signals after that the parametric and non-parametric time-frequency techniques are processed to the results signals to present the non-stationary multicomponent of these signals in function of time. The results show that the EMD technique associated to the Periodogram method give a good localization of the transient abnormal ECG and the energies of the EEG signals as compared to others time-frequency methods associated to the EMD technique
Copyright © 2013 Praise Worthy Prize - All rights reserved.
Keywords
Full Text:
PDFReferences
FM. Nolle, FK. Badura, JM. Catlett, Bowser RW, Sketch MH. CREI-GARD, a new concept in computerized arrhythmia monitoring systems. Computers in Cardiology vol.13, 1986, pp.515-518.
B Kemp, AH Zwinderman, B Tuk, HAC Kamphuisen, JJL Oberyé. Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG. IEEE-BME vol. 47, 2000, pp.1185-1194.
http://dx.doi.org/10.1109/10.867928
A. Khazaee, A. Ebrahimzadeh, Electrocardiogram Beat Classification Using Support Vector Machines and Efficient Features, (2011) International Journal on Communications Antenna and Propagation (IRECAP), 1 (6), pp. 515-520.
F. I. Muchtadi, Suprijanto, Robinsar , I. Gunawan, Time-frequency analysis of EEG Signals Response Due to simple Acupuncture Stimulation, World Academy of Science, Engineering and Technology, Issue 50 February 2009.
M. blanco-velasco, B. Weng, K. E. Barner, ECG signal denoising and baseline wander correction based on the empirical mode decomposition, computers in biology and medicine, vol. 38, 2008, pp.1-13.
http://dx.doi.org/10.1016/j.compbiomed.2007.06.003
G. Rilling, P. Flandrin, P. Goncalves, On Empirical Mode Decomposition and its Algorithms, IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, June, 2003, Grado-Trieste, Italy.
N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, E. H. Shih, Q. Zheng, C. C.Tung, H. H. Liu, “The Empirical Mode Décomposition and the hilbert Spectrum for Nonlinear and Nonstationary Time Séries Analysis”. Proceedings of the Royal Society of London, Tome A, Vol. 454, 1998, pp. 903-995.
http://dx.doi.org/10.1098/rspa.1998.0193
E.M. Abu Anas, S.Y. Lee, Md. Ka. Hasan Exploiting correlation of ECG with certain EMD functions for discrimination of ventricular fibrillation, Computers in Biology and Medicine, vol 41, 2011, pp 110–114.
http://dx.doi.org/10.1016/j.compbiomed.2010.12.005
K. Coughlin, et K.K. Tung, Empirical Mode Decomposition of Climate Variability in the Atmospheric, Hilbert-Huang Transform: Introduction and Applications, world scientific publishing (N. Huang & S. Shen édition Seattle, usa, 2004).
R.H. Clayton, A. Murray, Estimation of the ECG signal spectrum during ventricular fibrillation using the fast Fourier transform and maximum entropy methods, Proceedings Computers in Cardiology, pp. 867 – 870, Sep 5-8, 1993.
http://dx.doi.org/10.1109/cic.1993.378299
Özgen, M.T, Extension of the Capon’s spectral estimator to time–frequency analysis and to the analysis of polynomial-phase signals, Signal Process, Vol. 83, n.3, 2003, pp. 575–592.
http://dx.doi.org/10.1016/s0165-1684(02)00487-5
S. Elouaham, R. Latif, A. Dliou, E. Aassif, B. Nassiri, Analyse et comparaison d’un signal ECG normal et bruité par la technique temps-frequence parametrique de capon, Conference Mediterranéene sur l’Ingenierie Sure des Systemes Complexes- MISC’11, Mai 27-28, 2011, Agadir, Maroc.
S. Elouaham, R. Latif, A. Dliou, F. M. R. Maoulainine, M. Laaboubi, analysis of biomedical signals by the empirical mode decomposition and parametric time-frequency techniques , International Symposium on security and safety of Complex Systems, May 25-26, 2012, Agadir, Morocco.
http://dx.doi.org/10.1109/icocs.2012.6458575
F. Castanié, Spectral Analysis Parametric and Non-Parametric Digital Methods (Ltd, 2006).
http://dx.doi.org/10.1002/9781118601877
P. Goncalves F. Auger, P. Flandrin. Time-frequency toolbox, (1995).
P. Flandrin, N. Martin,M. Basseville, Methodes temps-frequence (Trait. Signa 9, 1992)
R. Latif, E. Aassif, G. Maze, A. Moudden, B.Faiz, "Determination of the group and phase velocities from time-frequency representation of Wigner-Ville", Journal of Non Destructive Testing & Evaluation International, Vol. 32 n.7, 1999, pp. 415-422.
http://dx.doi.org/10.1016/s0963-8695(99)00013-4
R. Latif, E. Aassif, G. Maze, D.Decultot, A. Moudden, B. Faiz, Analysis of the circumferential acoustic waves backscattered by a tube using the time-frequency representation of wigner-ville, Journal of Measurement Science and Technology, Vol. 11, n. 1, 2000, pp. 83-88.
http://dx.doi.org/10.1088/0957-0233/11/1/313
R. Latif, E. Aassif, A. Moudden, B. Faiz, G. Maze , The experimental signal of a mullayer structure analysis by the time-frequency and spectral methods, NDT&E International, Vol. 39, n. 5, 2006, pp. 349-355.
http://dx.doi.org/10.1016/j.ndteint.2005.10.003
R. Latif, E. Aassif, A. Moudden, B. Faiz, High resolution time- frequency analysis of an acoustic signal backscattered by a cylindrical shell using a Modified Wigner-Ville representation, Meas. Sci. Technol.14, 2003, pp. 1063-1067.
http://dx.doi.org/10.1088/0957-0233/14/7/322
R. Latif , M. Laaboubi , E. Aassif , G. Maze, Détermination de l’épaisseur d’un tube élastique à partir de l’analyse temps-fréquence de Wigner-Ville, Journal Acta-Acustica,, Vol 95, n. 5, 2009, pp. 843-848.
http://dx.doi.org/10.3813/aaa.918215
A. Djebbari, F. Bereksi-Reguig, A New Chirp–Based Wavelet for Heart Sounds Time–Frequency Analysis, (2011) International Journal on Communications Antenna and Propagation (IRECAP), 1 (1), pp. 92-102.
M. Laaboubi, E. Aassif, R. Latif, G. Maze, A. Moudden, Time-Frequency Spectrogram Analysis of Acoustic Signals Backscattered by an Air-Filled Aluminium Tube Immersed in Water, (2010) International Review on Computers and Software (IRECOS), 5 (2), pp. 145-149.
S.Z Mahamoodibad, A. Ahmadian, M.D. Abolhasani, ECG feature extraction using Daubechies wavelets, the Fifth IASTED International Conference, pp. 343–348, 2005.
N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shin, Q. Zheng, N.C. Yen, C.C. Tung and H.H. Liu, The Empirical Mode Decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. Royal Soc. A, vol. 454, 1998, pp. 903-995
http://dx.doi.org/10.1098/rspa.1998.0193
O. Beya, B. Jalil, E. Fauvet, O. Laligant, Empirical modal decomposition applied to cardiac signals analysis. Proceedings of the SPIE, 2010, February 04, 2010, San Jose, California, USA
http://dx.doi.org/10.1117/12.840667
B. W. Weng M. Blanco-Velasco, K.E. Barner, ECG signal denoising and baseline wander correction based on the empirical mode decomposition, Computers in Biology and Medicine, vol. 38, 2008, pp 1–13.
http://dx.doi.org/10.1016/j.compbiomed.2007.06.003
Refbacks
- There are currently no refbacks.
Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize