Constant Cyclic Loading Fatigue Crack Growth Modelling

A. Ali(1*), T. I. Mohd Ghazi(2), M. Z. Mohammadi(3)

(1) Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Malaysia
(2) Department of Chemical and Environment Engineering, Universiti Putra Malaysia, Malaysia
(3) Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Malaysia
(*) Corresponding author


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


A critical review concerning fatigue crack growth rate [FCGR] modelling is presented in this paper. The paper give a detailed of previous attempts have been made to model the FCGR from the simplest empirical model by Paris to advance and contemporary models such as the Weertman strain energy model, Tomkins high strain model, Coffin and Manson plastic strain model, Hobson-Brown model and Navarro- E de Los Rios,  N-R models. The pros and cons of each model are also discussed in term of capability of the model to incorporate the effects of a microstructure, hardening, residual stress, mean stress effects and surface roughness of the materials.
Copyright © 2015 Praise Worthy Prize - All rights reserved.

Keywords


Fatigue Crack Growth Modelling; Constant Loading

Full Text:

PDF


References


R. Khen, E. Altus, Micro-macro relations for fatigue crack growth. Mechanics of Materials, 1995. 19: p. 89-101.
http://dx.doi.org/10.1016/0167-6636(94)00027-e

P. C. Paris, F. J. Erdogan, A critical analysis of crack propagation law. Journal of basic engineering trans. ASME Series D, 1963. 85(4): p. 528-535.
http://dx.doi.org/10.1115/1.3656901

J. Weertman, "Fatigue crack propagation theories" fatigue and microstructure. ASM publications, 1979: p. 279-306.

P. D. Hobson, M.W. Brown, E. R. de Los Rios, Two phases of short crack growth in a medium carbon steel. Behaviour of short fatigue crack (Edited by K. J. Miller & E. R. de Los Rios), 1986: p. 441-459.

B. Tomkins, High strain fatigue. ISPRA courses on Mechanical Science and Materials edited by L. H. Larsson, 1981: p. 239-273.

L. F. Coffin, The flow and fracture of a brittle material. Journal of Applied Mechanics, 1950. 17: p. 233-248.

A. Navarro, E.R. de Los Rios, A microstructurally short fatigue crack growth equation. Fatigue and Fracture of Engineering Materials and Structure, 1988. 11(5): p. 383-396.
http://dx.doi.org/10.1111/j.1460-2695.1988.tb01391.x

A. Navarro, E. R. de Los Rios, Short and long fatigue crack growth : A unified model. Philosophical Magazine A, 1988. 57: p. 15-36.
http://dx.doi.org/10.1080/01418618808204496

A. Navarro, E. R. de Los Rios, Compact solution for a multizone BCS crack model with bounded or unbounded end conditions. Philosophical Magazine A, 1988. 57(1): p. 43-50.
http://dx.doi.org/10.1080/01418618808204498

P. C. Paris, M. P. Gomez, W. E. Anderson, A rational analytical theory of fatigue. The Trend in Engineering (Seattle: The University of Washington), 1961. 13(1): p. 9-14.

A. K. Vasudevan, K. Sadananda, G. Glinka, Critical parameters for fatigue damage. International Journal of Fatigue, 2001. 23: p. S39-S53.
http://dx.doi.org/10.1016/s0142-1123(01)00171-2

K. J. Kang, J. H. Song, Y. Y. Earmme, Fatigue crack growth and closure behaviour through a compressive residual stress field. Fatigue and Fracture Engineering Material and Structure, 1990. 13(1): p. 1-13.
http://dx.doi.org/10.1111/j.1460-2695.1990.tb00572.x

D. Kujawski, F. Ellyin, Fatigue crack growth model with load ratio effects. Engineering Fracture Mechanics, 1987. 28(4): p. 367-378.
http://dx.doi.org/10.1016/0013-7944(87)90182-2

M. J. Richmond, A. U. de Koning, A modern approach to fatigue crack growth modelling. Institute of Engineers, Australia. National Conf. Publication IEA, 1993. 2(93): p. 451-456.

F. A. McClintock, The Paris law for fatigue crack growth in terms of the crack tip opening displacement. Proc. of The TMS Fall Meeting, 1997: p. 3-24.

J. M. Bloom, S. R. Daniewicz, J. L. Hechmer, Plane strain crack growth models for fatigue crack growth life predictions. ASME Pressure Vessels Piping DIV PUB PVP, 1995. 306: p. 35-46.
http://dx.doi.org/10.1115/1.2842167

F. J. McMaster, D. J. Smith, Predictions of fatigue crack growth in aluminium alloy 2024-T351 using constraint factors. International Journal of Fatigue, 2001. 23: p. S93-S101.
http://dx.doi.org/10.1016/s0142-1123(01)00134-7

A. K. Vasudevan, K. Sadananda, N. Louat, Reconsideration of fatigue crack closure. Scripta Metallurgica, 1992. 27: p. 1673-1678.
http://dx.doi.org/10.1016/0956-716x(92)90164-a

K. Sadananda, K. V. Jata, A. K. Vasudevan, S. B. Biner, Role of Kmax on fatigue crack growth. Proc. of The TMS Fall Meeting, 1997: p. 203-210.

Y. H. Zhang, L. J. Wang, Statistical analysis of the surface fatigue crack growth in welded joints. Engineering Fracture Mechanics, 1993. 46(6): p. 1031-1035.
http://dx.doi.org/10.1016/0013-7944(93)90153-j

S. Pearson, Initiation of fatigue cracks in commercial aluminium alloys and subsequent propagation of very short cracks. Engineering Fracture Mechanics, 1975. 7: p. 235-247.
http://dx.doi.org/10.1016/0013-7944(75)90004-1

J. Weertman, Fatigue crack propagation theories. Fatigue and Microstructure, ASM publications, 1979: p. 279-306.

J. Z. Zuo, A. T. Kermanidis, S. G. Pantelakis, Strain energy density prediction of fatigue crack growth from hole of aging aircraft structures. Theoretical and Applied Fracture Mechanics, 2002. 38: p. 37-51.
http://dx.doi.org/10.1016/s0167-8442(02)00079-4

Z. Shaikh, Initiation, propagation and coalescence of short fatigue crack in AISI 316 stainless steel at 200C and 5500C. PhD. Thesis, Sheffield University, 1991.

C. S. Grimshaw, K. J. Miller, and J. M. Rees, Short fatigue crack growth under variable amplitude loading: A theoretical approach. Short Fatigue Crack, ESISI3, Eds K.J. Miller and E. R. de los Rios, Mechanical Engg. Publications London, 1992: p. 449-465.

W. Zhang, Short fatigue crack behaviour under different loading systems. PhD. Thesis, Sheffield University, 1991.

C. H. Wang, The effect of mean stress on short fatigue crack growth behaviour. PhD. Thesis, Sheffield University, 1990.

R. Akid, The initiation and growth of short fatigue crack in an Aqueous Saline Environment. PhD. Thesis, Sheffield University, 1987.

N. Gao, Short crack coalescence and growth in 316 stainless steel subjected to cyclic and time dependent deformation. Fatigue and Fracture Engineering Material and Structure, 1995. 18(12): p. 1423-1441.
http://dx.doi.org/10.1111/j.1460-2695.1995.tb00866.x

M. W. Brown, Interface between short, long and non propagating cracks,. In. The behaviour of short fatigue cracks, EGF 1, Pub. Sheffield UK Eds, K. J. Miller, E. R. de Los Rios, Mech. Eng. Pub.London, 1986: p. 423-439.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2019 Praise Worthy Prize