Robustness of Optimum TMDs According to Change of the Stiffness of the Structure

Sinan Melih Nigdeli(1), Gebrail Bekdaş(2*)

(1) Istanbul University Department of Civil Engineering, Turkey
(2) Istanbul University Department of Civil Engineering, Turkey
(*) Corresponding author


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


Robustness of tuned mass dampers (TMDs) is an important issue in seismic control of civil structures, because several assumptions and nonlinear characteristics can change the parameters of the structures. For that reason, this paper investigates the robustness of TMDs for the change of stiffness of the structure. A tuned mass damper optimized by using harmony search method was investigated for all possible optimum values in harmony memory matrix. According to the results, optimum TMD parameters are more robust for the increase of stiffness than the decrease of the stiffness.
Copyright © 2014 Praise Worthy Prize - All rights reserved.

Keywords


Tuned Mass Dampers; Optimization; Robustness; Harmony Search; Structural Dynamics

Full Text:

PDF


References


H. Frahm, Device for damping of bodies, U.S. Patent, No: 989,958, 1911.

J. Ormondroyd, J.P. Den Hartog, The theory of dynamic vibration absorber, T. ASME, 50, 1928, pp. 9–22.

J. P. Den Hartog, Mechanical Vibrations, third ed. (Mc Graw-Hill, 1947).

G. B. Warburton, Optimum absorber parameters for various combinations of response and excitation parameters, Earthq. Eng. Struct. D., 10, 1982, pp. 381–401.
http://dx.doi.org/10.1002/eqe.4290100304

R. Rana, A parametric study of tuned mass dampers and their generalizations (M.S. thesis, State University of New York, 1995).

R. Rana, T.T. Soong, Parametric study and simplified design of tuned mass dampers, Eng. Struct., 20, 1998, pp. 193–204.
http://dx.doi.org/10.1016/s0141-0296(97)00078-3

F. Sadek, B. Mohraz, A.W. Taylor, R.M. Chung, A method of estimating the parameters of tuned mass dampers for seismic applications, Earthq. Eng. Struct. D., 26, 1997, pp. 617–635.
http://dx.doi.org/10.1002/(sici)1096-9845(199706)26:6%3C617::aid-eqe664%3E3.0.co;2-z

C.C. Chang, Mass dampers and their optimal designs for building vibration control, Eng. Struct., 21, 1999, pp. 454-463.
http://dx.doi.org/10.1016/s0141-0296(97)00213-7

M.N.S. Hadi, Y. Arfiadi, Optimum design of absorber for MDOF structures, J. Struct. Eng.- ASCE, 124, 1998, pp. 1272–1280.
http://dx.doi.org/10.1061/(asce)0733-9445(1998)124:11(1272)

M.P. Singh, S. Singh, L.M. Moreschi, Tuned mass dampers for response control of torsional buildings, Earthq. Eng. Struct. D., 31, 2002, pp. 749–769.
http://dx.doi.org/10.1002/eqe.119

N.B. Desu, S.K. Deb, A. Dutta, Coupled tuned mass dampers for control of coupled vibrations in asymmetric buildings, Struct. Control Hlth., 13, 2006, pp. 897–916.
http://dx.doi.org/10.1002/stc.64

S. Pourzeynali, H.H. Lavasani, A.H. Modarayi, Active control of high rise building structures using fuzzy logic and genetic algorithms, Eng. Struct., 29, 2007, pp. 346-357.
http://dx.doi.org/10.1016/j.engstruct.2006.04.015

G. C. Marano, R. Greco, B. Chiaia, A comparison between different optimization criteria for tuned mass dampers design, J. Sound Vib., 329, 2010, pp. 4880-4890.
http://dx.doi.org/10.1016/j.jsv.2010.05.015

R. Steinbuch, Bionic optimisation of the earthquake resistance of high buildings by tuned mass dampers, J. Bionic Eng., 8, 2011, pp. 335-344.
http://dx.doi.org/10.1016/s1672-6529(11)60036-x

A.Y.T. Leung, H. Zhang, Particle swarm optimization of tuned mass dampers, Eng. Struct., 31, 2009, pp. 715-728.
http://dx.doi.org/10.1016/j.engstruct.2008.11.017

A.Y.T. Leung, H. Zhang, C.C. Cheng, Y.Y. Lee, Particle swarm optimization of TMD by non-stationary base excitation during earthquake, Earthq. Eng. Struct. D., 37, 2008, pp. 1223-1246.
http://dx.doi.org/10.1002/eqe.811

G. Bekdaş, S.M. Nigdeli, Estimating Optimum Parameters of Tuned Mass Dampers Using Harmony Search, Eng. Struct., 33, 2011, pp. 2716-2723.
http://dx.doi.org/10.1016/j.engstruct.2011.05.024

G. Bekdaş, S.M. Nigdeli, Mass Ratio Factor for Optimum Tuned Mass Damper Strategies, International Journal of Mechanical Sciences, 71, 2013, pp. 68-84.
http://dx.doi.org/10.1016/j.ijmecsci.2013.03.014

S.M. Nigdeli, G. Bekdaş, Optimum Tuned Mass Damper Design for Preventing Brittle Fracture of RC Buildings, Smart Structures and Systems, 12, 2013, pp. 137-155.
http://dx.doi.org/10.12989/sss.2013.12.2.137

Z.W. Geem, J.H. Kim, G.V. Loganathan, A new heuristic optimization algorithm: harmony search, Simul., 76, 2001, pp. 60–68.
http://dx.doi.org/10.1177/003754970107600201

Y.C. Toklu, G. Bekdaş, R. Temur, Analysis of Trusses by Total Potential Optimization Method Coupled with Harmony Search, Structural Engineering and Mechanics, 45(2), 2013, pp. 183-199.
http://dx.doi.org/10.12989/sem.2013.45.2.183

A. Kaveh, A.S.M. Abadi, Harmony search based algorithms for the optimum cost design of reinforced concrete cantilever retaining walls, International Journal of Civil Engineering, 9(1), 2011, pp. 1-8.
http://dx.doi.org/10.1007/s13369-012-0332-0

G. Bekdaş, S. M. Nigdeli, Cost Optimization of T-shaped Reinforced Concrete Beams under Flexural Effect According to ACI 318, In: “3rd European Conference of Civil Engineering”, December 2-4 2012, Paris, France.

G. Bekdaş, S. M. Nigdeli, Optimization of T-shaped RC Flexural Members for Different Compressive Strengths of Concrete, International Journal of Mechanics, 7, 2013, pp. 109-119.

A. Akın, M. P. Saka, Optimum detailing design of Reinforced Concrete Plane Frames to ACI 318-05 Using harmony search Method, In: “Proc. the Eleventh International Conference on Computational Structures Technology", 4-7 September 2012, Dubrovnik, Crotia.
http://dx.doi.org/10.4203/ccp.99.72

A. Akın, M. P. Saka, Optimum detailed design of RC continuous beams using harmony search algorithm, The Tenth International Conference on Computational Structures Technology, 14-17 September 2010, Valencia, Spain.
http://dx.doi.org/10.4203/ccp.93.131

A.H. Gandomi, X-S. Yang, S. Talatahari, A.H. Alavi, Metaheuristics in Modeling and Optimization. In ‘Metaheuristic Applications in Structures and Infrastructures’. Edited by A.H. Gandomi, X-S. Yang, S. Talatahari, A.H. Alavi, Elsevier, Chapter 1, February 2013.
http://dx.doi.org/10.1016/b978-0-12-398364-0.00001-2

A.H. Gandomi, A.H. Alavi, Krill herd: A new bio-inspired optimization algorithm, Communications in Nonlinear Science and Numerical Simulation, 17, 2012, pp. 4831-4845.
http://dx.doi.org/10.1016/j.cnsns.2012.05.010

G-G. Wang, A.H. Gandomi, A.H. Alavi, Stud krill herd algorithm, Neurocomputing, 128, 2014, pp. 363-370.
http://dx.doi.org/10.1016/j.neucom.2013.08.031

L. Guo, G-G. Wang, A.H. Gandomi, A.H. Alavi, H. Duan, A new improved krill herd algorithm for global numerical optimization, Neurocomputing, 138, 2014, pp. 392-402.
http://dx.doi.org/10.1016/j.neucom.2014.01.023

A.H. Gandomi, Interior search algorithm (ISA): A novel approach for global optimization, Communications in Nonlinear Science and Numerical Simulation, 2014.
http://dx.doi.org/10.1016/j.isatra.2014.03.018


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2019 Praise Worthy Prize