Estimation of Fault Plane Parameters by Using Stochastic Optimization Methods

Özlem Türkşen(1*)

(1) Ankara University, Faculty of Science, Statistics Department, Turkey
(*) Corresponding author


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


Estimation of fault plane parameters play an important role for determination of an earthquake occurance time. Complex nonlinear structure of the fault plane models make the estimation of fault plane parameters more challenging by using classical optimization methods. In this study, stochastic optimization methods, Nelder-Mead simplex (NMS), Simulated Annealing (SA), Genetic Algorithm (GA), and hybrid of GA and NMS (GAHNMS) are used to estimate the fault plane parameters. Simulated data set is used for the application of optimization algorithms. The results show that the GAHNMS is the most preferred method among the other stochastic optimization methods.
Copyright © 2014 Praise Worthy Prize - All rights reserved.

Keywords


Fault Plane Parameters; Nelder-Mead Simplex (NMS); Simulated Annealing (SA); Genetic Algorithm (GA); Hybrid of GA and NMS (GAHNMS)

Full Text:

PDF


References


P. Carvelli, M. H. Murray, P. Segall, Y. Aoki, T. Kato, Estimating source parameters from deformation data, with an application to the March 1997 earthquake swarm of Izu Peninsula, Japan, Journal of Geophysical Research, 106(B6), 2001, pp. 11217-11238.
http://dx.doi.org/10.1029/2000jb900399

T. Arnadottir, P. Segall, The 1989 Loma Prieta earthquake imaged from inversion of geodetic data, Journal of Geophysical Research, 99(B11), 1994, pp. 21835-21855.
http://dx.doi.org/10.1029/94jb01256

M. Sambridge, K. Mosegaard, Monte-Carlo Methods in Geophysical Inverse Problems, Reviews of Geophysical, 40(3), 2002, pp. 1-29.
http://dx.doi.org/10.1029/2000rg000089

I. L. Ateya, S. Takemoto, Gravity inversion modelling across a 2-D dike-like structure-A Case Study, Earth Planet Space, 54, 2002, pp. 791-796.
http://dx.doi.org/10.1186/bf03351732

G. A. Ichinose, K. D. Smith, J.G. Anderson, Source Parameters of the 15 November 1995 Border Town, Nevada, Eathquake Sequence, Bulletin Seismological Society of America, 87(3), 1997, pp. 652-667.

A. K. Abdel-Fattah, An approach to investigate earthquake source processes, Acta Geophysica Polonica, 51(3), 2003, pp. 257-269.

A. K. Abdel-Fattah, A. Badaway, Source Characteristics and Tectonic Implications of Moderate Earthquake, Northeastern Cairo Prefecture, Acta Geophysica Polonica, 52(1), 2004, pp. 29-43.

X. Li, T. Koike, M. Pathmathevan, A very fast re-annealing (VFSA) approach for land data assimilation, Computers and Geosciences, 30, 2004, pp. 239-248.
http://dx.doi.org/10.1016/j.cageo.2003.11.002

S. J. Chang, C. E. Baag, C. A. Langston, Joint analysis of teleseismicreceiver functions and surface wave dispersion using the genetic algorithm, Bulletin of the Seismological Society of America, 94, 2004, pp. 691-704.
http://dx.doi.org/10.1785/0120030110

W. Kim, I. K. Hahm, S. J. Ahn, D. H. Lim, Determining hypocentral parameters for local earthquakes in 1-D using a genetic algorithm, Geophysical Journal International, 166, 2006, pp. 590-600.
http://dx.doi.org/10.1111/j.1365-246x.2006.02883.x

A. H. Gandomi, A. H. Alavi, Krill herd: A new bio-inspired optimization algorithm, Communications in Nonlinear Science and Numerical Solutions, 7(12), 2012, pp. 4831-4845.
http://dx.doi.org/10.1016/j.cnsns.2012.05.010

A. H. Gandomi, Interior search algorithm (ISA): A novel approach for global optimization, ISA Transactions, 2014, Elsevier, DOI:10.1016/j.isatra.2014.03.018.
http://dx.doi.org/10.1016/j.isatra.2014.03.018

A. H. Gandomi, X. S. Yang, S. Talatahari, A. H. Alavi, Metaheuristic Applications in Structures and Infrastructures, (Elsevier, 2013).
http://dx.doi.org/10.1016/b978-0-12-398364-0.00001-2

J. A. Nelder, R. Mead, A simplex method for function minimization, Computer Journal, 7, 1965, pp. 308-313.
http://dx.doi.org/10.1093/comjnl/7.4.308

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by Simulated Annealing, Science, 220(4598), 1983, pp. 671-680.
http://dx.doi.org/10.1126/science.220.4598.671

J. Holland, Adaptation In Natural and Artificial Systems (University of Michigan Press, 1975).
http://dx.doi.org/10.1016/s0092-8240(76)80036-5

H. Rahami, A. Kaveh, M. Aslani, R.N. Asl, A Hybrid Modified Genetic-Nelder Mead Simplex Algorithm for Large-Scale Truss Optimization, International Journal of Optimization in Civil Engineering, 1, 2011, pp. 29-46.

B. Aktuğ, A Dynamic Approach to Elastic Half Space Models and Earthquake Coordinate Relocations. Map Journal, 129, 2003, pp. 1-16.

S. Luke, Essentials of Metaheuristics (Lulu, 2nd Ed., 2013).

J. H. Mathews, K. F. Kurtis, Numerical Methods Using Matlab. Prentice-Hall (New-Jersey, 4th Ed., 2004).

V. Cherny, Thermodynamic approach to the traveling salesman problem: an effcient simulation algorithm, Journal of Optimization Theory and Applications, 45, 1985, pp. 41-51.
http://dx.doi.org/10.1007/bf00940812

I. Boussaid, J. Lepagnot, P. Siarry, A survey on optimization metaheuristics, Information Sciences, 2013, pp. 82-117.
http://dx.doi.org/10.1016/j.ins.2013.02.041

Ö. Türkşen, The Adaptive Simulated Annealing Method in Estimation of Earthquake Search Parameters Through Surface Measuraments, Dept. Statistics, Ankara Univ., Master Thesis, 2005.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2019 Praise Worthy Prize