Next Generation Attenuation Models and Time Independent Probabilistic Seismic Hazard of Darjeeling-Sikkim Himalaya


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


We deliver Next Generation Attenuation (NGA) Model and Time-independent Probabilistic Seismic Hazard Maps of Darjeeling-Sikkim Himalaya based on enriched earthquake catalogue, upgraded tectonic database, seismological database and seismotectonic implications. For consideration of near and far-field source effect, we synthesize a strong motion database by using finite-fault stochastic modeling & frequency wave number (FK) integration. NGA models have been developed for three tectonic types’ in the region viz. normal, strike-slip and thrust faulting. In addition, a regional seismic source characterization is performed using Brune circular crake model. Small to Moderate magnitude earthquakes nucleating at hypocentral depths <70 km in the region recorded by IIT Kharagpur Darjeeling-Sikkim Strong Motion Array (DSSMA) seemed to have Brune stress drop ranging between 0.75 and 147 bars. In compliance with the National Earthquake Hazard Reduction Program (NEHRP) & Federal Emergency Management Agency (FEMA) regulations  a geotechnical site characterization is performed using effective shear-wave (S-wave velocity (Vs30) distribution based on soil taxonomy, composition, grain size, lithology and topographic gradient implicating site classes: A (S-wave velocity, β > 1500 m/s), B (β = 760-1500 m/s), C (β = 360-760 m/s) and D (β = 180-360 m/s). Generic site amplification for each site class is estimated as per elevation from the recorded accelerograms of about 300 seismic events in the terrain that has provided a site amplification variation from 2.5 to 8.5 with the predominant frequency ranging between 4.0 Hz to 18.0 Hz. Probabilistic Seismic Hazard Analysis (PSHA) can be performed using both the time-dependent and the time-independent approaches. The present study follows the time-independent protocol using layered polygonal as well as tectonic sources and a logic tree frame work to consider both the epistemic and aleatory uncertainties in the magnitude, rupture distance and the several combinations of attenuation relations already existing for the terrain and also developed as a part of the present investigation. For seismic hazard analysis, the earthquake source model is composed of layered polygonal seismogenic sources, fault seismogenic sources, several combinations of attenuation relations, seismicity parameters and maximum credible earthquakes for all tectonic types prevalent in the region. The hazard maps in terms of Peak Ground Acceleration (PGA), Pseudo Spectral Acceleration (PSA) at 0.2 s & 1 s for 10% probability of exceedance in 50 years with a return period of 475 years for Darjeeling-Sikkim Himalaya have been generate in GIS platform. The PGA distribution shows a variation between 0.265g and 0.640g. Maximum hazard distribution is associated with the active tectonics viz Main Boundary thrust (MBT), Main Central Thrust (MCT) and Main Frontal Thrust (MFT). The major urban centers like Gangtok, Mangan and Darjeeling depict higher hazard level to the tune of 0.64g. The design response spectra generated from the estimated PGA and PSA at 1.0 s & 0.2 s provide an updated scenario significantly higher than the existing Bureau of Indian Standard (BIS) codal provisions
Copyright © 2013 Praise Worthy Prize - All rights reserved.

Keywords


Seismic Source Attributes; NGA; Seismic Source Zone; Logic Tree Frame Work; PSHA

Full Text:

PDF


References


J. Douglas, Earthquake ground motion estimation using strong-motion records: a review of equations for the estimation of peak ground acceleration and response spectral ordinates, Earth Science Reviews, vol. 61, Issue 1-2, April 2003, pp.43-104.
http://dx.doi.org/10.1016/s0012-8252(02)00112-5

M. Power, B. Chiou, N, Abrahamson, Y, Bozorgnia, T, Shantz, C, Roblee, An overview of the NGA project, Earthquake Spectra, vol. 24 n.1,February 2008, pp.3-21
http://dx.doi.org/10.1193/1.2894833

S. K. Nath, K. K. S. Thingbaijam, Peak ground motion predictions in India: an appraisal for rock sites, Journal of Seismology, vol.15, Issue 2, April 2011, pp. 295-315.
http://dx.doi.org/10.1007/s10950-010-9224-5

901.(K. K. S. Thingbaijam, S. K. Nath, Estimation of maximum earthquakes in northeast India region, Pure and Applied Geophysics, Vol. 165, Issue 5, May 2008, pp. 889

http://dx.doi.org/10.1007/s00024-008-0334-8

BIS, IS 1893–2002 (Part 1), Indian Standard Criteria for Earthquake Resistant Design of Structures, Part 1–General Provisions and Buildings, Bureau of Indian Standards, New Delhi,2002.

901.-K. K. S. Thingbaijam, S. K. Nath, Estimation of maximum earthquakes in northeast India region, Pure and Applied Geophysics, Vol. 165, Issue 5, May 2008, pp. 889

S. K. Nath, K. K. S. Thingbaijam, J. C. Vyas, P. Sengupta, S. M. S. P. Dev, Macroseismic-driven Site Effects in the Southern Territory of West Bengal, India, Seismological Research Letters, Vol. 81 n. 3, May/June 2010, pp. 480-487.
http://dx.doi.org/10.1785/gssrl.81.3.480

S. K. Nath, M. Vyas, I. Pal, P. Sengupta, A Seismic Hazard Scenario in the Sikkim Himalaya from Seismotectonics, Spectral Amplification, Source Parameterization and Spectral Attenuation Laws using Strong Motion Seismometry, Journal of Geophysical Research (Solid Earth), vol.110 , Issue B1, January 2005, pp.1-20.
http://dx.doi.org/10.1029/2004jb003199

242.(S. K. Nath, A. Raj, K. K. S. Thingbaijam, A. Kumar, Ground motion synthesis and seismic scenario in Guwahati City - A stochastic approach, Seismological Research Letters, vo. 80 n.2, March/April 2009, pp. 233

http://dx.doi.org/10.1785/gssrl.80.2.233

242.-S. K. Nath, A. Raj, K. K. S. Thingbaijam, A. Kumar, Ground motion synthesis and seismic scenario in Guwahati City - A stochastic approach, Seismological Research Letters, vo. 80 n.2, March/April 2009, pp. 233

D. M. Boore, G. M. Atkinson, Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01s and 10.0s, Earthquake Spectra, vol.24, Issue 1, February 2008, pp.99–138.
http://dx.doi.org/10.1193/1.2830434

K. W. Campbell, Y. Bozorgnia, Updated near-source ground-motion (attenuation) relations for the horizontal and vertical components of peak ground acceleration and acceleration response spectra, Bulletin of the Seismological Society of America, vol. 93 n.1, February 2003, pp.314-331.
http://dx.doi.org/10.1785/0120020029

W. Marzocchi, Seismic Hazard and Public Safety, Eos, Transactions, American Geophysical Union, vol. 94, Issue 27, July 2013, pp. 237–244.
http://dx.doi.org/10.1002/2013eo270005

377.(I. Pal, S. K. Nath, K. Shukla, D. K. Pal, A. Raj, K. K. S. Thingbaijam, B. K. Bansal, Earthquake Hazard Zonation of Sikkim Himalaya Using a GIS Platform, Natural Hazards, vol. 45, Issue 3, June 2008, pp.333

http://dx.doi.org/10.1007/s11069-007-9173-7

377.-I. Pal, S. K. Nath, K. Shukla, D. K. Pal, A. Raj, K. K. S. Thingbaijam, B. K. Bansal, Earthquake Hazard Zonation of Sikkim Himalaya Using a GIS Platform, Natural Hazards, vol. 45, Issue 3, June 2008, pp.333

A. Nayak, S. K. Nath, K. K. S. Thingbaijam, S. Baruah, New insights into path attenuation of ground motions in northeast India and northwest Himalayas, Bulletin of the Seismological Society of America,vol.101 n. 5, October 2011, pp. 2550–2560.
http://dx.doi.org/10.1785/0120100207

A, Gansser, Geology of the Himalayas (Wiley-Interscience Publication, New York, 1964).

S. Dasgupta, P. Pande, D. Ganguly, Z. Iqbal, K. Sanyal, N. V. Venaktraman, S. Dasgupta , B. Sural, L. Harendranath, K. Mazumdar, S. Sanyal, A. Roy, L. K. Das, P. S. Misra, H. Gupta, Seismotectonic Atlas of India and its Environs, Geological Survey of India, Calcutta, vol.59, 2000, pp. 87.

V. C. Thakur, A. K. Mahajan, V. Gupta, Seismotectonics of September 2011 Sikkim Earthquake: a component of transcurrent deformation in eastern Himalaya, Himalayan Geology, vol.33 n.1, 2012, pp.89-96

M. Barazangi, J. Ni, Velocities and propagation characteristics of Pn and Sn waves beneath the Himalayan Arc and Tibetan Plateau: Possible evidence for underthrusting of Indian continental lithosphere beneath Tibet, Geology, vol.10 n.4, April 1982, pp.179-185.
http://dx.doi.org/10.1130/0091-7613(1982)10%3C179:vapcop%3E2.0.co;2

T. Nakata, I. K. Otsuk, S. H. Khan, Active Faults, stress field and plate motion along Indo Eurasian plate boundary, Tectonophysics, vol.181, Issue 1-4, September 1990, pp.83-95.
http://dx.doi.org/10.1016/0040-1951(90)90009-w

GSI, The Bihar-Nepal earthquake of 1934, Mem. Geological Survey of India, vol. 72, 1939,pp. 287-288.

A. Singh, R. Kumar, S. Raju, Seismic Structure of the under thrusting Indian crust in Sikkim Himalaya, Tectonics, vol. 29 , Issue 6, December 2010,pp.1- 12.
http://dx.doi.org/10.1029/2010tc002722

R. De, J. R. Kayal, Seismic Activity at the MCT in Sikkim Himalaya, Tectonophysics, vol.386, Issue 3-4 , August 2004, pp. 243-248.
http://dx.doi.org/10.1016/j.tecto.2004.06.013

P. Hazarika, R. Kumar, G. Srijayanthi, S. P. Raju, P. N. Rao, D. Srinagesh, Transverse tectonics in the Sikkim Himalaya: Evidence from Seismicity and Focal-Mechanism Data, Bulletin of the Seismological Society of America,vol.100 n.4, August 2010, pp.1816-1822.
http://dx.doi.org/10.1785/0120090339

R. Kumar, P. Hazarika, S. G. Prasad, A. Singh, S. Saha, Tectonics implication of the September 2011 Sikkim earthquake and its aftershocks, Current Science, vol.102 n.5, March 2012, pp.788-792.

V. K. Borok, On the estimation of the displacement in an earthquake source and of source dimension, Annals of Geophysics, vol.12, n. 2, 1959, pp.205-214.

T. C. Hank, M. Wyss, The use of body wave spectra in the determination of seismic source parameters, Bulletin of the Seismological Society of America, vol. 62 n.2,April 1972, pp.561-589.

J. N. Brune, Tectonic stress and the spectra of seismic shear waves from earthquakes, Journal of Geophysical Research, vol.75, Issue 26, September 1970, pp. 4997–5009.
http://dx.doi.org/10.1029/jb075i026p04997

J. N. Brune, Correction, Journal of Geophysical Research, vol.76, Issue 20, July 1971, pp. 5002.
http://dx.doi.org/10.1029/jb076i020p05002

W. Thatcher, T. C. Hanks, 1973, Source parameters of southern California earthquake, Journal of Geophysical Research, vol.78, Issue 35, December 1973, pp.8547-8576.
http://dx.doi.org/10.1029/jb078i035p08547

W. P. Burton, S. N. Melis, M. Brooks, 1995, Coseismic crustal deformation on a fault zone defined by microseismicity in the Pavliani area, central Greece, Geophysical Journal International, vol. 123, Issue 1, October 1995, pp.16–40.
http://dx.doi.org/10.1111/j.1365-246x.1995.tb06659.x

G, Chouliaras, G. N. Stavrakakis, Seismic source parameters from a new dial-up seismological network in Greece, Pure and Applied Geophysics, vol. 150, 1997, pp.91-111.
http://dx.doi.org/10.1007/s000240050065

A. Raj, S. K. Nath, B. K. Bansal, K. K. S. Thingbaijam, A. N. Thiruvengadam, A. Yadav, M. L. Arrawatia, Rapid estimation of source parameters using finite fault modeling-case studies from the Sikkim and Garhwal Himalayas, Seismological Research Letters, vol. 80 n.1, January/February 2009, pp. 89-96.
http://dx.doi.org/10.1785/gssrl.80.1.89

C. E. Acton, K. Priestley, S. Mitra, V. K. Gaur, Crustal structure of the Darjeeling-Sikkim Himalaya and Southern Tibet, Geophysical Journal International, vol.184, Issue 2, February 2011, pp. 829¬-852.
http://dx.doi.org/10.1111/j.1365-246x.2010.04868.x

J. N. Brune, Seismic Moment, seismicity and rate of slip along major fault zones, Journal of Geophysical Research, vol.73, Issue 2, January 1968, pp.777–794.
http://dx.doi.org/10.1029/jb073i002p00777

M. L. Sharma, H. R. Wason, Occurrence of low stress drop earthquakes in the Garhwal Himalaya region, Physics of the Earth and Planetary Interiors, vol. 85, Issue 3-4, September 1994, pp.265–722.
http://dx.doi.org/10.1016/0031-9201(94)90117-1

D. D. Singh, B. K. Rastogi, H. K. Gupta, Spectral analysis of body waves for earthquakes and their source parameters in the Himalaya and nearby regions, Physics of the Earth and Planetary Interiors, vol. 18, Issue 2, 1978, pp.143–152.
http://dx.doi.org/10.1016/0031-9201(79)90143-2

D. Kumar, I. Sarkar, V. Sriram, K. N. Khattri, Estimation of the source parameters of the Himalaya earthquake of October 19, 1991 average effective shear wave attenuation parameter and local site effects from accelerograms, Tectonophysics, vol. 407, Issues 1-2, September 2005, pp.1-24.
http://dx.doi.org/10.1016/j.tecto.2005.06.006

H. K. Gupta, D. D. Singh, Spectral analysis of body waves for earthquakes in Nepal Himalaya and vicinity: their focal parameters and tectonic implications, Tectonophysics, vol. 62, Issues 1-2, February 1980, pp.53–66.
http://dx.doi.org/10.1016/0040-1951(80)90135-3

K. Aki, Scaling law of seismic spectrum, Journal of Geophysical Research, 72 n.4, February 1967, pp.1217-1231.
http://dx.doi.org/10.1029/jz072i004p01217

1010.(D. Motazedian, G. M. Atkinson, Stochastic finite-fault modeling based on a dynamic corner frequency, Bulletin of the Seismological Society of America, vol. 95 n.3, June 2005, pp.995

http://dx.doi.org/10.1785/0120030207

22369.(R. R. Castro, F. Pacor, A. Sala, C. Petrungaro, S-wave attenuation and site effects in the region of Friuli, Italy, Journal of Geophysical Research, vol.101 n. B10, October 1996, pp.22355

http://dx.doi.org/10.1029/96jb02295

D. M. Boore, Stochastic Simulation of High-Frequency Ground Motions Based on Seismological Models of the Radiated Spectra, Bulletin of the Seismological Society of America,vol.73 n. 6A, December 1983, 1865–1894.

1010.-D. Motazedian, G. M. Atkinson, Stochastic finite-fault modeling based on a dynamic corner frequency, Bulletin of the Seismological Society of America, vol. 95 n.3, June 2005, pp.995

1993.-J. G. Anderson, S. E. Hough, A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies, Bulletin of the Seismological Society of America, vol. 74 n.5, October 1984, pp.1969

M. Ordaz, S. K. Singh, Source spectra and spectral attenuation of seismic waves from Mexican earthquakes, and evidence of amplification in the hill zone of Mexico City, Bulletin of the Seismological Society of America, vol. 82 n.1, February 1992, pp. 24–43.

22369.-R. R. Castro, F. Pacor, A. Sala, C. Petrungaro, S-wave attenuation and site effects in the region of Friuli, Italy, Journal of Geophysical Research, vol.101 n. B10, October 1996, pp.22355

J. A. Hudson, A quantitative evaluation of seismic signals at teleseismic distances – II. Body waves and surface waves from and extended source, Journal of Geophysics, vol.18, Issue 4, November 1969, pp.353–370.
http://dx.doi.org/10.1111/j.1365-246x.1969.tb03574.x

1081.(S. K. Nath, P. Sengupta, J. R. Kayal, Determination of S-Wave Site Response at Garhwal Himalaya from the aftershock sequence of 1999 Chamoli Earthquake, Bulletin of the Seismological Society of America, vol. 92 n.3, April 2002, pp.1072

http://dx.doi.org/10.1785/0120000246

127.(N. A. Abrahamson, W. J. Silva, Empirical response spectral attenuation relations for shallow crustal earthquakes, Seismological Research Letter, vol. 68 n.1, January/ February 1997,pp. 94

http://dx.doi.org/10.1785/gssrl.68.1.94

1841.-N. A. Haskell, Total energy and energy spectra density of elastic waves from propagating faults, Bulletin of the Seismological Society of America, vol. 54 n 6A, December 1964, pp. 1811

C. Y. Wang, R. B. Herrmann, A numerical study of P-, SV-, and SH-wave generation in a plane layered medium, Bulletin of the Seismological Society of America, vol. 70 n.4, August 1980,pp.1015–1,036.

R. B. Herrmann, SH wave generation by Dislocation sources-a numerical study, Bulletin of the Seismological Society of America, vol. 69 n.1, February 1979, pp.1–15.

1002.-D. L. Wells, K. J. Coppersmith, New empirical relations among magnitude rupture length, rupture width, rupture area, and surface displacement, Bulletin of the Seismological Society of America, vol. 84 n.4 , August 1994,pp.974

W. B. Joyner, D. M. Boore, Peak Horizontal Acceleration and Velocity from Strong Motion Records Including Records from the 1979 Imperial Valley, California, Earthquake, Bulletin of the Seismological Society of America, vol. 71 n.6, December 1981, pp. 2011–2038.

N. Thiruvengadam, Deterministic Seismic Hazard Scenario of North-East India Through Stochastic Ground Motion Simulation and Site Depended Attenuation Models, M. Tech. dissertation, Dept. Geology and Geophysics, Indian Institute of Technology, Kharagpur, India, 2009.

R. D. Borcherdt, Effects of local geology on ground motion near San Francisco Bay, Bulletin of the Seismological Society of America, vol. 60 n.1, February 1970, 29–61.

J, Lermo, F. J. Chavez-Garcia, Site effect evaluation using spectral ratios with only one station, Bulletin of the Seismological Society of America, vol. 83 n.5,October1993, pp.1574–1594.

1081.-S. K. Nath, P. Sengupta, J. R. Kayal, Determination of S-Wave Site Response at Garhwal Himalaya from the aftershock sequence of 1999 Chamoli Earthquake, Bulletin of the Seismological Society of America, vol. 92 n.3, April 2002, pp.1072

127.-N. A. Abrahamson, W. J. Silva, Empirical response spectral attenuation relations for shallow crustal earthquakes, Seismological Research Letter, vol. 68 n.1, January/ February 1997,pp. 94

N. A. Abrahamson, W. J. Silva, Summary of the Abrahamson and Silva NGA ground motion relations, Earthquake Spectra, vol. 24 n.1,February 2008, pp.67–97.
http://dx.doi.org/10.1193/1.2924360

2978.(G. Scasserra, J. P. Stewart, P. Bazzurro, G. Lanzo, F. Mollaioli, A Comparison of NGA Ground-Motion Prediction Equations to Italian Data, Bulletin of the Seismological Society of America, vol. 99 n.5,October 2008, pp.2961

http://dx.doi.org/10.1785/0120080133

2978.-G. Scasserra, J. P. Stewart, P. Bazzurro, G. Lanzo, F. Mollaioli, A Comparison of NGA Ground-Motion Prediction Equations to Italian Data, Bulletin of the Seismological Society of America, vol. 99 n.5,October 2008, pp.2961

J. Shoja-Taheri, S. Naserieh, G. Hadi , A Test of the Applicability of NGA Models to the Strong Ground-Motion Data in the Iranian Plateau, Journal of Earthquake Engineering, vol. 14, 2010, pp.278–292.
http://dx.doi.org/10.1080/13632460903086051

177.(P. J. Stafford, F. O. Strasser, J. J. Bommer, An evaluation of the applicability of the NGA models to ground-motion prediction in the Euro-Mediterranean region, Bulletin of Earthquake Engineering, vol. 6, 2008, 149

http://dx.doi.org/10.1007/s10518-007-9053-2

177.-P. J. Stafford, F. O. Strasser, J. J. Bommer, An evaluation of the applicability of the NGA models to ground-motion prediction in the Euro-Mediterranean region, Bulletin of Earthquake Engineering, vol. 6, 2008, 149

K. W. Campbell, Y. Bozorgnia, Next Generation Attenuation (NGA) empirical ground motion models: Can they be used in Europe? First European Conference on Earthquake Engineering and Seismology, A joint event of the 13th ECEE & 30th General Assembly of the ESC., Geneva, Switzerland, 3-8 September 2006, pp.458.

J. X. Zhao, K. Irikura, J. Zhang, An empirical site-classification method for strong-motion stations in Japan using H/V response spectral ratio, Bulletin of the Seismological Society of America, vol.96 n.3, June 2006, pp.914–925.
http://dx.doi.org/10.1785/0120050124

P. S. Lin, C. T. Lee, Ground-motion attenuation relationships for subduction-zone earthquakes in northeastern Taiwan, Bulletin of the Seismological Society of America, vol. 98 n.1, February 2008, pp.220–240.
http://dx.doi.org/10.1785/0120060002

K. W. Campbell, Y. Bozorgnia, NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10s, Earthquake Spectra, vol. 24 n.1, February 2008, pp.139–171.
http://dx.doi.org/10.1193/1.2857546

G. M. Atkinson, D. M. Boore, Earthquake ground-motion predictions for eastern North America, Bulletin of the Seismological Society of America, vol. 96 n.6, December 2006, pp. 2181–2205.
http://dx.doi.org/10.1785/0120050245

G. R. Toro, Modification of the Toro et al (1997) Attenuation Equations for Large Magnitudes and Short Distances, Risk Engineering Inc,vol.4, July 2002.

M. L. Sharma, J. Douglas, H. Bungum, J. Kotadia, Ground-Motion Prediction Equations Based on Data from the Himalayan and Zagros Regions, Journal of Earthquake Engineering, vol.13, Issue 8, November 2009, pp.1191-1210
http://dx.doi.org/10.1080/13632460902859151

S. K. Nath, K. K. S. Thingbaijam, S. K. Maiti, A. Nayak, Ground-motion predictions in Shillong region, northeast India, Journal of Seismology, vol.16, Issue 3, February 2012, pp. 475-488.
http://dx.doi.org/10.1007/s10950-012-9285-8

B. Gutenberg, C. F. Richter, Frequency of earthquakes in California, Bulletin of the Seismological Society of America, vol. 34 n.4,October 1944, pp.185–188.

S. Wiemer, M. Wyss, Minimum magnitude of complete reporting in earthquake catalogs: examples from Alaska, the Western United States and Japan, Bulletin of the Seismological Society of America, vol. 90 n.4, August 2000, pp. 859–869.
http://dx.doi.org/10.1785/0119990114

S. A. Drury, A. S. D. Walker, Display and enhancement of gridded aeromagnetic data of the Solway Basin, International Journal of Remote Sensing, vol.8, n.10, 1987, pp.1433-1444.
http://dx.doi.org/10.1080/01431168708954787

S. E. Ananaba, D. E. Ajakaiye, Evidence of tectonic control of mineralization in Nigeria from lineament density analysis-A Landsat study, International Journal of Remote Sensing, vol. 8, Issue 10, April 1987, pp.1445-1454.
http://dx.doi.org/10.1080/01431168708954788

T. K. Ghosh, S. Viswanatham, Neotectonic analysis of Mendha river basin, Rajasthan, India, International Journal of Remote Sensing, vol.12, Issue 12, 1991, pp. 2585-2596.
http://dx.doi.org/10.1080/01431169108955287

A. Mah, G. R. Taylor, P. Lennox, L. Balia, Lineament analysis of Landsat Thematic Mapper Images, Northern Territory, Australia, Photogram Engineering & Remote Sensing, vol. 61 n.6, June 1995, pp. 761–773.

S. K. Nath, K. K. S. Thingbaijam, Probabilistic seismic hazard assessment of India, Seismological Research Letters, vol. 83 no.1, January/February 2012, pp.135–149.
http://dx.doi.org/10.1785/gssrl.83.1.135

C. Christova, Seismicity depth pattern, seismic energy and b value depth variation in the Hellenic Wadati-Benioff zone, Physics of the Earth and Planetary Interiors, vol.72, Issue 1-2,July 1992, pp.38–48
http://dx.doi.org/10.1016/0031-9201(92)90047-y

T. M. Tsapanos, The depth distribution of seismicity parameters estimated for the South American area, Earth Planet Science Letters, vol.180, Issue 1-2, July 2000, pp.103–115.
http://dx.doi.org/10.1016/s0012-821x(00)00251-x

T. I. Allen, G. Gibson, A. Brown, J. P. Cull, Depth variation of seismic source scaling relations: Implications for earthquake hazard in southeastern Australia, Tectonophysics ,vol. 390, Issue 1–4, October 2004, pp. 5–24.
http://dx.doi.org/10.1016/j.tecto.2004.03.018

A. Frankel, Mapping Seismic Hazard in the central and eastern United States, Bulletin of the Seismological Society of America, vol. 66 n.4 , July/August 1995, pp.8–21.
http://dx.doi.org/10.1785/gssrl.66.4.8

M. Stirling, G. H. McVerry, K. R. Berryman, A new seismic hazard model for New Zealand, Bulletin of the Seismological Society of America, vol. 92 n.5, June 2002, pp.1878–1903.
http://dx.doi.org/10.1785/0120010156

K. Jaiswal, R. Sinha, Probabilistic seismic-hazard estimation for Peninsular India, Bulletin of the Seismological Society of America, vol.97 n.1B, February 2007, pp.318–330.
http://dx.doi.org/10.1785/0120050127

J. J. Bommer, J. Douglas, F. Scherbaum, F. Cotton, H. Bungum, D. Fäh, On the selection of ground-motion prediction equations for seismic hazard analysis, Seismological Research Letters, vol. 81 n.5, September/October 2010, pp.794–801.
http://dx.doi.org/10.1785/gssrl.81.5.783

F. Scherbaum, E. Delavaud, C. Riggelsen, Model selection in seismic hazard analysis: An information-theoretic perspective, Bulletin of the Seismological Society of America, vol.99 n.3, December 2009, pp.234-247.
http://dx.doi.org/10.1785/0120080347

C. A. Cornell, Engineering seismic risk analysis, Bulletin of the Seismological Society of America, vol. 58 n.5, October 1968, pp.1583–1606.

L. Esteva, Seismic Risk and Seismic Design Decisions, Seismic Design for Nuclear Power Plants (R J Hansen Editor, MIT Press, 1970).

R. K. McGuire, FORTRAN Computer Program for Seismic Risk Analysis, US Geological Survey, 1976, Open file report:76–67.

IBC, International Building Code. International Code Council, Inc., Country Club Hills Illinois, 2009.

D. J. Wald, V. Quitoriano, T. H. Heaton, H. Kanamori, Relationship between Peak Ground Acceleration, Peak Ground Velocity, and Modified Mercalli Intensity in California, Earthquake Spectra, vol. 15 n.3, August 1999, pp.557-564.
http://dx.doi.org/10.1193/1.1586058

S. E. Hough, R. Bilham, N. Ambraseys, N. Feldl, Revisiting the 1897 Shillong and 1905 Kangra earthquakes in northern India: Site response, Moho reflections and a triggered earthquake, Current Science, vol. 88 n.10, May 2005, pp.1632-1638.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize