Bubble Two-Phase Flow Simulation with Volume of Fluid Interface Tracking Method


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


Numerical methods developed in simulation of two phase flows, explicitly resolve and track the interface with special numerical techniques of either Lagrangian or Eulerian type. While Lagrangian techniques are suited for small deformations of the interfaces, Eulerian techniques are usually preferred for highly distorted complex interfaces. For the most of flow regimes, the shape and evolution of the interfaces are not easily implemented in calculation codes, and this explains the interest in the development of interface tracking methods. In this paper, we present some of the main techniques used in the modelling of two phase flows. We will focus on the application of the Volum of Fluid method of SURFER code in the prediction of the flow around a spherical and Taylor bubbles rising in a quiescent liquid.
Copyright © 2015 Praise Worthy Prize - All rights reserved.

Keywords


Multiphase Flow; Bubbles; Interface Tracking and Capturing; VOF Method

Full Text:

PDF


References


Scardovelli, R. & Zaleski, S. Direct numerical simulation of free-surface and interfacial flow, Annu. Rev. Fluid Mech. Vol.31, 567-603 (1999).
http://dx.doi.org/10.1146/annurev.fluid.31.1.567

Karstein Sørli, A Review of Comutational Strategies for Complex Geometry and Physics, SINTEF Applied Mathematics, 2002.

Mayank Malik, Volume tracking with adaptive refinement, Master thesis, University opf Toronto, 2004.

James M. Hyman, Numerical Methods for Tracking Interfaces, Physica 12D 396-407, 1984.
http://dx.doi.org/10.1016/0167-2789(84)90544-x

Annaland, M. Van S., Deen, N.G. & Kuipers J.A.M. Numerical Simulation of gas bubbles behaviour using a three-dimensional volume of fluid method. Chem.Eng.Sci, Vol.60, 2999-3011(2005).
http://dx.doi.org/10.1016/j.ces.2005.01.031

S. Popinet and S. Zaleski, A front tracking algorithm for the accurate representation of surface tension, Int J. Num Methds in Fluids, 30(6):775-793, 1999.
http://dx.doi.org/10.1002/(sici)1097-0363(19990730)30:6%3C775::aid-fld864%3E3.3.co;2-r

Rider WJ, Kothe DB. Stretching and tearing interface tracking methods. Los Alamos National Laboratory. http://laws. Lanl.gov/XHM/personnel/wjr/Web_papers/pubs.html; 1995.

Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys. 1981; 39:201.
http://dx.doi.org/10.1016/0021-9991(81)90145-5

Rudman M. Volume-tracking methods for interfacial flow calculations. Int J Numer Methods Fluids. 1997;24:671-691.
http://dx.doi.org/10.1002/(sici)1097-0363(19970415)24:7%3C671::aid-fld508%3E3.0.co;2-9

B. Lafaurie, R. Scardovelli, M. Zanetti, S. Zaleski, Modelling Merging and Fragmentation in Multiphase flows with SURFER, Journal of Computational Physics, 113, 134-147, 1994.
http://dx.doi.org/10.1006/jcph.1994.1123

S. Zaleski et al., Volume of fluid interface tracking with smoothed surface stress methods for 3D flows, Journal of Computational Physics, 152, 423-456, 1999.
http://dx.doi.org/10.1006/jcph.1998.6168

Sethian JA. Level Set Methods. Cambridge, UK : Cambridge Univ Press ; 1996.

Sussman M, Smereka P, Osher S ; A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys. 1994 ; 114 ; 146-159.
http://dx.doi.org/10.1006/jcph.1994.1155

Unverdi, S.O. & Tryggvason, G., A front-tracking method for viscous incompressible multi-fluid flows. J. Comput. Phys., Vol. 100, 25-37 (1992).
http://dx.doi.org/10.1016/0021-9991(92)90307-k

Annaland, M. Van S., Dijkhuizen, W., Deen, N.G. & Kuipers J.A.M. Numerical Simulation of behavior of gas bubbles using a 3-D front-tracking method. AIChE J. Vol.52, 99-110 (2006).
http://dx.doi.org/10.1002/aic.10607

Anna-Karin Tornberg, Interface Tracking Methods with Application to Multiphase Flows, Doctoral Dissertation, Royal Institute of Technology, 2000.

R.R. Nourgaliev and al., The lattice Boltzmann equation method: theoritical interpretation, numerics and implications, Int J of Multiphase flow 29: 117-169, (2003).
http://dx.doi.org/10.1016/s0301-9322(02)00108-8

Clift, R. Grace, J.R.; Weber, M.E., Bubbles, Drops, and Particles, Academic Press, San Diego, 1978.
http://dx.doi.org/10.1002/aic.690250425

G.B. Wallis, One-dimensional two-phase flow, Bubbly Flow, Chap 9, Mc Graw-Hill, 2 nd edition,1979.

M. Kawaji, J.M. Dejesus et Tudose G., Investigation of flow structures in vertical slug flow, Nuclear Engineering and Design, 175, 37-48, 1997.
http://dx.doi.org/10.1016/s0029-5493(97)00160-x

H. Anglart, M.Z. Podowski : « Fluid Mechanics of Taylor Bubbles and Slug Flows in Vertical Channels», NURETH-9, 1999.D.

Merrouche : « Simulation numérique d’un écoulement diphasique à Poches ascendant en conduite verticale », mémoire de magister (Thermique et Conversion d’Energie), UMB Boumerdès, 87pp., 2003.

D. Merrouche, K. Mohammedi, I. Belaidi, « Application de la méthode VOF avec schéma de reconstruction géométrique affine au suivi d’interface d’une bulle de Taylor 2D», 4° Journées de mécanique de l’EMP, Algiers (Algeria) 2004.

D. Segueni, T. Agri : « Application de la Méthode VOF au Suivi d’Interfaces Gaz-Liquide », mémoire de fin d’études ingénieurs, UMB Boumerdès, 92pp, 2003.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2022 Praise Worthy Prize