Optimum Time Available for Fast Ignition in Inertial Confinement Fusion

(*) Corresponding author

Authors' affiliations

DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)


An analytic model for the dynamics of fast ignition is studied for the case in which the proton beam heats the fuel by generating a subsonic heat wave. It shows that the temperature, the confinement parameter, and density of the hot spot required for ignition decrease with the proton range R. Our calculations together with the results of supersonic model, allow for the determination of the optimum time available for ignition as ti,opt ≈ 1.47×10-6ρ-10 s
Copyright © 2015 Praise Worthy Prize - All rights reserved.


Fast Ignition; Deuterium-Tritium (DT) Fuel; Hot Spot; Proton Range; Subsonic Model

Full Text:



A. Ghasemizad et al, On the Investigation of Spark Formation Conditions and Energy Gain in Inertial Confinement Fusion, Iranian Journal of Science & Technology 29 (2005), 421-431. Result score too low

D. B. Harris et al, Burn Performance of Inertial Confinement Fusion Targets, Nucl. Fusion 28 (1988), 25-42. 5.328491

V. Yu. Bychenkov et al, Fast Ignitor Concept with Light Ions, Plasma Phys. Rep. 27 (2001), 1017-1020. 4.1583095

R. E. Kidder, Energy Gain of Laser-Compressed Pellets: A Simple Model Calculation, Nucl. Fusion 16 (1976), 405-408. 5.7917385

J. Meyer-ter-Vehn, On Energy Gain of Fusion Targets: The Model of Kidder and Bodner Improved, Nucl. Fusion 22 (1982), 561-566. 6.164311

M. Tabak et al, Ignition and High Gain with Ultrapowerful Lasers, Phys. Plasmas 1 (1994), 1626-1634. 3.4194884

A. Caruso et al, The Ignition of Dense DT Fuel by Injected Triggers, Nucl. Fusion 36 (1996), 745-757. 4.9645257

A. R. Piriz et al, Optimum Particle Range for Triggering Fast Ignition, Phys. Plasmas 5 (1998), 4373-4376. 4.0110536

M. Roth et al, Fast Ignition by Intense Laser-Accelerated Proton Beams, Phys. Rev. Lett. 86 (2001), 436-439. 3.0072634

R. A. Snavely et al, Intense High-Energy Proton Beams from Petawatt-Laser Irradiation of Solids, Phys. Rev. Lett. 85 (2000), 2945-2948. 3.0731356

E. L. Clark et al, Measurements of Energetic Proton Transport through Magnetized Plasma from Intense Laser Interactions with Solids, Phys. Rev. Lett. 84 (2000), 670-673. 3.309207

S. P. Hatchett et al, Electron, Photon, and Ion Beams from the Relativistic Interaction of Petawatt Laser Pulses with Solid Targets, Phys. Plasmas 7 (2000), 2076-2082. 2.3786554

R. Kodama et al, Long-Scale Jet Formation with Specularly Reflected Light in Ultraintense Laser-Plasma Interactions, Phys. Rev. Lett. 84 (2000), 674-677. 3.6163785

A. Ghasemizad et al, Determination of Optimum Proton Pulse Duration for Triggering Fast Ignition in Inertial Confinement Fusion, Iranian Journal of Physics Research 7 (2007), 31-41. Result score too low

S. Nakai et al, Principles of Inertial Confinement Fusion-Physics of Implosion and the Concept of Inertial Fusion Energy, Rep. Prog. Phys. 59 (1996), 1071-1131. 4.868836

M. Temporal et al, Numerical study of Fast Ignition of Ablatively Imploded Deuterium-Tritium Fusion Capsules by Ultraintense Proton Beams, Phys. Plasmas 9 (2002), 3098-3107. 4.11954

A. R. Piriz et al, Heat Waves Driven by Thermal Radiation in Tamped Flows, Phys. Rev. A45 (1992), 8787-8794. 4.3151674

J. Sanz et al, Self-Similar Model for Tamped Ablation Driven by Thermal Radiation, Phys. Fluids B4 (1992), 683-692. 2.8948457

A. R. Piriz, Conditions for the Ignition of Imploding Spherical Shell Targets, Nucl. Fusion 36 (1996), 1395-1403. 6.6443686

S. Atzeni et al, Burn Performance of Fast Ignited, Tritium-Poor ICF Fuels, Nucl. Fusion 37 (1997), 1665-1677. 5.344681


  • There are currently no refbacks.

Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2022 Praise Worthy Prize