Manufacturing Extrusion Process for Forced Convection Micropolar Fluids Flow with Magnetic Effect Over a Stretching Sheet


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


A heat transfer problem for micropolar fluids with magnetic effect past through a stretching sheet has been studied. Governing equations for heat convection equation of a stretching sheet, and continuity equation, momentum equation and energy equation of a micropolar fluid have been analyzed by a combination of the similarity transformation and a finite-difference method. The paper studies of these dimensionless parameters, the Prandtl number Pr, the magnetic parameter M, the material parameter K and the Eckert number Ec, respectively. The numerical results indicate that, an increase in the magnetic parameter gives a decrease in the values of the velocities and Nusselt number, or an increase in the values of the shear stress, couple stress at the surface and temperature. The material parameter has the opposite effect of magnetic field parameter on the values of the velocities, temperature, and shear stress and Nusselt number. The temperature decreases as the Prandtl number increases or increases as the Eckert number increases.
Copyright © 2015 Praise Worthy Prize - All rights reserved.

Keywords


Heat Transfer; Magnetic Field; Micropolar Fluid; Stretching Sheet; Finite Difference Method

Full Text:

PDF


References


Z. Tadmor, I. Kelin, Engineering principles of plasticating extrusion, in: Polymer Science and Engineering Series, Van Nostrand Reinhold, New York, 1970.

E. G. Fisher, Extrusion of Plastic, Wiley, New York, 1976.

J. B. McLeod, K. R. Rajagopal, On the uniqueness of flow of a Navier–Stokes fluid due to a stretching boundary, Arch. Rational Mech. Anal. 98 (1987) 385-393.
http://dx.doi.org/10.1007/bf00276915

B. C. Sakiadis, Boundary-layer behavior on continuous solid surfaces, AIChE J. 7 (1961) 26-28.
http://dx.doi.org/10.1002/aic.690070108

L. E. Erickson, L. T. Fan, V. G. Fox, Heat and mass transfer on a moving continuous flat plate with suction or injection, Ind. Eng. Chem. Fund. 5 (1969) 19-25.
http://dx.doi.org/10.1021/i160017a004

V. G. Fox, L. E. Erickson, L. T. Fan, The laminar boundary layer on a moving continuous flat sheet immersed in a non-Newtonian fluid, Am. Inst. Chem. Eng. J. 15 (1969) 327-333.
http://dx.doi.org/10.1002/aic.690150307

L. J. Crane, Flow past a stretching plate, ZAMP 21 (1970) 645-647.
http://dx.doi.org/10.1007/bf01587695

P. S. Gupta, A. S. Gupta, Heat and mass transfer on a stretching sheet with suction or blowing, Can. J. Chem. Eng. 55 (1977) 744 -746.
http://dx.doi.org/10.1002/cjce.5450550619

C. K. Chen, M. I. Char, Heat transfer on a continuous stretching surface with suction or blowing, J. Math. Anal. Appl. 135 (1988) 568-580.
http://dx.doi.org/10.1016/0022-247x(88)90172-2

A. Chakrabarti, A. S. Gupta, Hydromagnetic flow heat and mass transfer over a stretching sheet, Q. Appl. Math. 37 (1979) 73–78.

A. C. Eringen, Theory of micropolar fluids, J. Math. Mech. 6 (1966) 1-18.
http://dx.doi.org/10.1512/iumj.1967.16.16001

A. C. Eringen, Theory of thermomicro fluids, Math. Anal. 38 (1972) 480-496.

H. S. Takhar and V. M. Soundalgekar, Boundary layer flow of a micropolar fluid - non-similar solution, Mechanics Research Communications, Volume 13, Issue 5, September-October 1986, pp. 255-263.
http://dx.doi.org/10.1016/0093-6413(86)90065-0

Cho-Kuang Chen and Tsan-Hui Hsu, Heat transfer of a thermomicropolar fluid past a porous stretching sheet, Computers & Mathematics with Applications, Volume 21, Issue 8, 1991, pp. 37-45.
http://dx.doi.org/10.1016/0898-1221(91)90049-a

I. A. Hassanien, Boundary layer flow and heat transfer on a continuous accelerated sheet extruded in an ambient micropolar fluid, International Communications in Heat and Mass Transfer, Volume 25, Issue 4, May 1998, pp. 571-583.
http://dx.doi.org/10.1016/s0735-1933(98)00044-x

Emad M. Abo-Eldahab and Mohamed A. El Aziz, Flow and heat transfer in a micropolar fluid past a stretching surface embedded in a non-Darcian porous medium with uniform free stream, Applied Mathematics and Computation, Volume 162, Issue 2, 15 March 2005, pp. 881-899.
http://dx.doi.org/10.1016/j.amc.2003.12.129

N. T. Eldabe, E. F. Elshehawey, Elsayed M. E. Elbarbary and Nasser S. Elgazery, Chebyshev finite difference method for MHD flow of a micropolar fluid past a stretching sheet with heat transfer, Applied Mathematics and Computation, Volume 160, Issue 2, 14 January 2005, pp. 437-450.
http://dx.doi.org/10.1016/j.amc.2011.11.025

N. T. Eldabe and Mahmoud E. M. Ouaf, Chebyshev finite difference method for heat and mass transfer in a hydromagnetic flow of a micropolar fluid past a stretching surface with Ohmic heating and viscous dissipation, Applied Mathematics and Computation, Volume 177, Issue 2, 15 June 2006, pp.561-571.
http://dx.doi.org/10.1016/j.amc.2005.07.071

Mostafa A. A. Mahmoud, Thermal radiation effects on MHD flow of a micropolar fluid over a stretching surface with variable thermal conductivity, Physica A: Statistical Mechanics and its Applications, Volume 375, Issue 2, 1 March 2007, pp. 401-410.
http://dx.doi.org/10.1016/j.physa.2007.12.001

Emad M. Abo-Eldahab and Ahmed F. Ghonaim, Convective heat transfer in an electrically conducting micropolar fluid at a stretching surface with uniform free stream, Applied Mathematics and Computation, Volume 137, Issues 2-3, 25 May 2003, Pages 323-336.
http://dx.doi.org/10.1016/s0096-3003(02)00128-5

T. Cebeci and P. Bradshaw, Physical and Computational Aspects of Convective Heat Transfer, Springer-Verlag, (1984).
http://dx.doi.org/10.1007/978-3-662-02411-9


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2022 Praise Worthy Prize