A Method for Accurate Low-Dimensional Approximation of Luikov Equations

(*) Corresponding author

Authors' affiliations

DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)


This paper focuses on the linear formulation of the Luikov system of partial differential equations representing heat and moisture transfer within capillary porous media. A method for accurate description of such phenomena using low-dimensional models has been proposed. It works in two steps: Luikov’s partial differential equations are first decoupled using a standard method, thus reduced to a very low number of ordinary differential equations using a powerful method based on singular valued decomposition techniques. Main asset of this two-step method is numerical efficiency. It is proven that the computational cost for low-dimensional models generation is strongly reduced compared to standard one-step reduction methods directly applied to the Luikov’s equations. A numerical example shows the appropriateness of our developments
Copyright © 2014 Praise Worthy Prize - All rights reserved.


Heat and Moisture Transfer; Capillary Porous Media; Luikov Equations; Model Reduction; Singular Values Decomposition

Full Text:



A.V. Luikov, System of differential equations of heat ans mass transfer in capillary porous bodies, Int. J. Heat Mass Transfer, vol.18, 1975, pp.1-14.

A.V. Luikov, Heat and Mass Transfer (Mir, 1980).

O. Krischer, Die wissenschaftlichen Grundlagen der Trocknungstechnik (Springer, 1965).

Zw. Iwantschewa, M.D. Mikhailov, Über Differentialgleichungen für Wärme-und Stoffaustausch von Hygroskopischen Stoffen, Wärme-u. Stoffübertragung, vol.1, 1968, pp.117-120.

D.A. de Vries, Simultaneous transfer of heat and moisture in porous media, Trans. Am. Geophys. Union, vol.39, 1958, pp.909-916.

L.B. Dantas, H.R.. Orlande, R.M. Cotta, An inverse problem for heat and mass transfer in capillary porous media, Int. J. Heat Mass Transfer, vol.46, 2003, pp.1587-1598.

R. Belarbi, M. Qin, A. Aït-Mokhtar, L.O. Nilsson, Experimental and theoretical investigation of non-isothermal transfer in hygroscopic uilding materials, Building and Environment, vol.43, 2008, pp.2154-2162.

A.V. Luikov, Yu.A. Mikhailov, Theory of Energy and Mass Transfer (Pergamon Press, 1965).

M.D. Mikhailov, M.N. Özisik, Unified Analysis and Solutions of Heat and Mass Diffusion (Dover Publications, 1994).

K.N. Shukla, Diffusion Processes During Drying of Solids (World Scientific Publishing Inc., 1993).

E. Palomo, Résolution de problèmes thermiques de grande dimension. Méthodes de réduction (Editions Universitaires Européennes, 2011, ISBN 978-613-1-56538-0).

E. C. Antoulas, An overview of approximation methods for large-scale dynamical systems, Annual Reviews in Control, vol.29, 2005, pp.181-190.

E. Liberge, A. Hamdouni, Reduce order modelling method via proper orthogonal decomposition (POD) for flow around an oscillatory cylinder, Journal of Fluids and Structures, vol.26, 2010, pp.292-311.

A. Dumon, C. Allery, A. Ammar, Proper general decomposition (PGD) for the resolution of Navier-Stokes equations, Journal of Computational Physics, vol.230, 2011, pp.1387-1407.

C.W. Rowley, Model reduction for fluids using balanced proper orthogonal decomposition, Int. J. on Bifurcation and Chaos, vol.15, 2005, pp.997-1013.

J. Berger, S. Rouchier, S. Tasca-Guernouti, M. Woloszyn, C. Buhe, On the integration of hygrothermal bridges into whole building HAM modeling, Proc. BS2013, 13th Conference of International Building Performance Simulation Association, Cnabéry, Farnce, August 26-28, 2013, pp. 3578-3585.

G. Lefebvre, La méthode modale en thermique. Modélisation, simulation, mise en oeuvre et applications (Ellipses, 2007).

B.C. Moore, Principal components analysis in linear systems: controllability, observability and model reduction, IEE Transactions on Automatic Control AC, vol.26, 1981, pp.17-32.

K. Glover, All optimal Hankel-norm approximations of linear multivariate systems and their L∞-error bounds, Int. J. Control, vol.39, 1984, pp.1115-1193.

A. Ait-Yahia, E. Palomo, Thermal systems modelling via singular value decomposition: direct and modular approach, Applied Mathematical Modelling, vol. 23, 1999, pp. 447-468.

A. Ait-Yahia, E. Palomo, Numerical simplification method for state-space models of thermal systems, Numerical Heat Transfer, Part B, vol. 37, 2000, pp. 201-225.

J.L. Dauvergne, E. Palomo del Barrio, A spectral method for low-dimensional description of melting/solidification within shape-stabilized phase-change materials, Numerical Heat Transfer, Part B, vol. 56, 2009, pp. 142-166.

J.L. Dauvergne, E. Palomo del Barrio, Toward a simulation-free P.O.D. approach for low-dimensional description of phase change problems, Int. J. of Thermal Sciences, vol. 49, 2010, pp. 1369-1382.

J.W. Riberiro, R.M. Cotta, M.D. Mikhailov, Integral transform solution of Luikov's equations for heat and mass transfer in capillary porous media, Int. J. of Heat and Mass Transfer, vol. 36, 1993, pp. 4467-4475.

J.W. Ribeiro, R.M. Cotta, On the solution of non-linear drying problems in capillary porous media through integral transformation of Liukov equations, Int. J. for Numerical Methods in Engineering, vol. 38, 1995, pp. 1001-1020.

L.B. Dantas, H.R.B. Orlande, R.M. Cotta, Improved lumped-differential formulations and hybrid solution methods for drying in porous media, Int. J. of Thermal Sciences, vol. 46, 2007, pp. 878-889.

R.S.G. Conceição, E.N. Macêdo, L.B.D. Pereira, J.N.N. Quaresma, Hybrid integral transform solution for the analysis of drying in spherical capillary-porous solids based on Luikov equations with pressure gradient, Int. J. of Thermal Sciences, vol. 71, 2013, pp. 216-236.

M.D. Mikhailov, General solutions of the diffusion equations coupled at boundary conditions, Int. J. Heat Mass Transfer, vol.16, 1973, pp.2155-2164.

L. Arnold, Stochastic differential equations: Theory and applications (John Wiley & Sons, 1971).

S. Raji, Caractérisation hygro thermique, par une approche multi échelle, de constructions en bois massif en vue d’amélioration énergétique et de valorisation environnementale, PhD, Université Bordeaux 1, 2006.

R. Bartels, G. Stewart, Solution of the matrix equation AX + XB = C: Algorithm 432, Comm. ACM, vol.15, 1972, pp.820-826.

S. Hammarling, Numerical solution of the stable, non-negative definite Lyapunov equation, IMA J. Numer. Anal., vol.2, 1984, pp.303-323.

I.M. Jaimoukha, E.M. Kasenally, Krylov sunspace methods for solving large Lyapunov equations, SIAM J. Numer. Anal., vol.31, 1994, pp.227-251.

R.B. Lehoucq, D.C. Sorensen, C. Yang, ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods (SIAM Publications, 1998).


  • There are currently no refbacks.

Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2022 Praise Worthy Prize