Analysis of the Anomalous Thermal Properties of Phase Change Materials Based on Paraffin Wax and Multi Walls Carbon Nanotubes

(*) Corresponding author

Authors' affiliations

DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)


Effective thermal conductivity and phase change properties of paraffin wax-based nanocomposites with multi-walled carbon nanotubes are experimentally investigated in this paper. It has been observed that the thermal conductivity enhancement achieved by a small amount of nanotubes is much higher than that predicted by theoretical models. However, the most striking results obtained concern the phase change behavior of the composites. Indeed, a significant rise of the latent heat of the composite compared to that of the paraffin wax has been observed. Moreover, the latent heat increases linearly with the amount of nanotubes added. Several factors might account for these results and are discussed in the paper
Copyright © 2013 Praise Worthy Prize - All rights reserved.


Nanocomposites; Phase Change Materials; Nanotubes; Heat Transfer Enhancement; Latent Heat Enhancement; Thermal Energy Storage

Full Text:



M.M. Farid, A.M. Khudhair, S.A.K. Razack, S. Al-Hallaj, A review on phase change energy storage: materials and applications, Energy Convers. Manage., vol. 45, 2004, pp. 1597 – 1615.

S.D. Sharma, K. Sagara, Latent heat storage materials and systems: a review, Int. J. Green Energy, vol. 2, 2005, pp. 1 – 56.

B. Zalba, J.M. Marin, L.F. Cabeza, H. Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Appl. Therm. Eng., vol. 23, 2003, pp. 251 – 283.

M. Kenisarin, K. Mahkamov, Solar energy storage using phase change materials, Renew. Sustain. Energy Rev., vol. 11, 2007, pp. 1913 – 1965.

L. Fan, J.M. Khodadadi, Thermal conductivity enhancement of phase change materials for thermal energy storage: A review, Renew. Sustain. Energy Rev., vol. 15, 2011, pp. 24 – 46.

J.M. Khodadadi, L. Fan, H. Babaei, Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: A review, Renew. Sustain. Energy Rev., vol. 24, 2013, pp. 418 – 444.

A. Elgafy, K. Lafdi, Effect of carbon nanofiber additives on thermal behavior of phase change materials, Carbon, vol. 43, 2005, pp. 3067 – 3074.

H. Hong, J. Wensel, S. Peterson, W. Roy, Efficiently lowering the freezing point of anti-freeze coolants, J. Thermophysics and Heat Transfer, vol. 21, 2007, pp. 446 – 448.

R.D. Weinstein, T.C. Kopec, A.S. Fleischer, E. D'Addio, C.A. Bessel, The experimental exploration of embedding phase change materials with graphite nanofibers for the thermal management of electronics, J. Heat Transfer, vol. 130, 2008, pp. 042405.

J.L. Zeng, Y.Y. Liu, Z.X. Cao, J. Zhang, Z.H. Zhang, X.L. Sun et al., Thermal conductivity enhancement of MWNTS on the PANI/tetradecanol form-stable PCM, J. Thermal Analysis and Calorimetry, vol. 91, 2008, pp. 443 – 446.

S. Shaikh, K. Lafdi, K. Hallinan, Carbon nanoadditives to enhance latent energy storage of phase change materials, J. Appl. Physics, vol. 103, 2008, pp. 094302.

J. Wang, H. Xie, Z. Xin, Thermal properties of heat storage composites containing multiwalled carbon nanotubes, J. Appl. Phys., vol. 104, 2008, pp. 113537.

S. Kim, L.T. Drzal, High latent heat storage and high thermal conductivity phase change materials using exfoliated graphite nanoplatelets, Solar Energy Materials & Solar Cells, vol. 93, 2009, pp. 136 – 142.

J.L. Zeng, Z. Cao, D.W. Yang, F. Xu, L.X. Sun, X.F. Zhang et al., Effects of MWNTS on phase change enthalpy and thermal conductivity of a solid-liquid organic PCM, J. Thermal Analysis and Calorimetry, vol. 95, 2009, pp. 507 – 512.

J. Wang, H. Xie, Z. Xin, Thermal properties of paraffin based composites containing multi-walled carbon nanotubes, Thermochimica Acta, vol. 488, 2009, pp. 39 – 42.

J. Wang, H. Xie, Z. Xin, Y. Li, L. Chen, Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers, Solar Energy, vol. 84, 2010, pp. 339 – 344.

J. Wang, H. Xie, Z. Xin, Y. Li, L. Chen, Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes, Carbon, vol. 48, 2010, pp. 3979 – 3986.

S. Mo, Y. Chen, J. Yang, X. Luo, Experimental study on solidification behavior of carbon nanotube nanofluid, Adv. Materials Research, vol. 171-172, 2011, pp. 333 – 336.

Y. Cui, C. Liu, S. Hu, X. Yu, The experimental exploration of carbonnanofiber and carbon nanotube additives on the thermal behavior of phase change materials, Solar Energy Materials & Solar Cells, vol. 95, 2011, pp. 1208 – 1212.

J. Xiang, L.T. Drzal, Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material, Solar Energy Materials & Solar Cells, vol. 95, 2011, pp. 1811 – 1818.

F. Yavari, H. Raesi Fard, K. Pashayi, M.A. Rafiee, A. Zamiri, Z. Yu et al., Enahnced thermal conductivity of nanostructured phase change composites due to low concentration graphene additives, J. Phys. Chem. C, vol. 115, 2011, pp. 8753 – 8758.

T.X. Li, J.H. Lee, R.Z. Wang, Y.T. Kang, Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes, Energy, vol. 55, 2013, pp. 752 – 761.

Z. Han, A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review, Progress in Polymer Science, vol. 36, 2011, pp. 914 – 944.

C. Wei, Structural phase transition of alkane molecules in nanotube composites, Physical Review B, vol. 76, 2007, pp. 134104.

J.S. Yang, C-L. Yang, M-S. Wang, B-D. Chen, X-G. Ma, Crystallization of alkane melts induced by carbon nanotubes and graphene nanosheets: a molecular dynamics simulation study, Phys. Chem. Chem. Phys., vol. 13, 2011, pp. 15476 – 15482.

H. Babei, P. Keblinski, J.M. Kodadadi, Thermal conductivity enhancement of paraffins by increasing the alignement of molecules through adding CNT/graphene, Int. J. Heat and Mass Transfer, vol. 58, 2013, pp. 209 – 216.

J.P. Small, L. Shi, P. Kim, Mesoscopic thermal and thermoelectric measurements of individual carbon nanotubes, Solid State Commun., vol. 127, 2003, pp. 181 – 186.

C.W. Nan, G. Liu, Y. Lin, A simple model for thermal conductivity of carbon nanotube-based composites, Chemical Physics Letters, vol. 375, 2003, pp. 666 – 669.

C.W. Nan, G. Liu, Y. Lin, Interface effect on thermal conductivity of carbon nanotube composites, Appl. Phys. Lett., vol. 85, 2004, pp. 3549 – 3551.

E. Yamada, T. Ota, Effective thermal conductivity of dispersed materials, Heat Mass Transf., vol. 13, 1980, pp. 27 – 37.

Y.Z. Zheng, H.P. Hong, Modified model for effective thermal conductivity of nanofluids containing carbon nanotubes, J. Thermophys. Heat Transf., vol. 21, 2007, pp. 658 – 660.

D.J. Yang, S.G. Wang, Q. Zhang, P.J. Sellin, G. Chen, Thermal and electrical transport in multi-walled carbon nanotubes, Phys. Lett. A, vol. 329, 2004, pp. 207 – 213.

Y. Mamunya, A. Boudenne, N. Lebovka, L. Iboss, Y. Candau, M. Lisunova, Electrical and thermophysical properties of PVC-MWCNT nanocomposites, Compos. Sci. Technol., vol. 68, 2008, pp. 1981 – 1988.

S.A. Maruyama, A molecular dynamics simulation of heat conduction in finite length SWNTs, Physica B, vol. 323, 2002, pp. 193 – 1995.

C. Alba-Simionesco, B. Coasne, G. Dosseh, G. Dudziak, K.E. Gubbins, R. Radhakrishnan, M. Sliwinska-Bartkowiak, Effects of confinement on freezing and melting, J. Phys.: Condens. Matter, vol. 18, 2006, pp. R15 – R68.


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2023 Praise Worthy Prize