Experimental Investigation of Heat Transfer Enhancement with Cu, Fe2O3 Ethyleneglycol Distilled Water Nanofluid in Horizontal Tube


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


The present investigates experimentally the pressure drop and convective heat transfer coefficient of ethylene glycol(EG) and distilled water (DW) based iron oxide (Fe2O3 (30nm)) and cupper (Cu (30nm)) nanofluids in horizontal tube (4mm inner diameter ,6mm outer diameter, and length=2.5m) in the fully developed laminar flow. The concentrations of nanofluid mixture used are ranging from (0.5 – 2.5% vol ). The properties of nanofluids (density, viscosity, thermal conductivity and specific heat) are practically measured. The obtained results show an increase in heat transfer coefficient of 38.4% for Fe2O3 + DW, 33.2 % for Fe2O3 + ( EG + DW ), 27.5%, for Fe2O3 + EG and 48.6 % for Cu + DW, 40.2% for Cu + ( EG + DW ), 29.7 % for Cu + EG . The measured results show that Cu with distilled water nanofluid gives maximum heat transfer enhancement compared with other nanofluid used. As well as the experimental results show that the data for nanofluids friction factor show a good agreement with analytical prediction from the Darcy's equation for single – phase flow. This paper decided that the nanofluid behaviors are close to the typical Newtonian fluids through the relationship between viscosity and shear rate. Moreover to NuR are used to present the corresponding flow and heat transfer inside the tub
Copyright © 2013 Praise Worthy Prize - All rights reserved.

Keywords


Nanofluid; Ethylene Glycol; NuR; Enhancement

Full Text:

PDF


References


L.F. Chen, H.Q. Xie, Y. Li, W. Yu, Thermochim. Acta (2008), 477, 21.
http://dx.doi.org/10.1016/j.tca.2008.08.001

T.K. Hong, H.S. Yang, C.J. Choi, J. Appl. Phys. 97, (2005), 064311.
http://dx.doi.org/10.1063/1.1861145

J. Garg, B. Poudel, M. Chiesa, J.B. Gordon, J.J. Ma, J.B. Wang, Z.F. Ren, Y.T. Kang, H. Ohtani, J. Nanda, G.H. McKinley, G. Chen, J. Appl. Phys. ,(2008)103, 074301.
http://dx.doi.org/10.1063/1.2902483

H.Q. Xie, J.C. Wang, T.G. Xi, Y. Liu, F. Ai, Q.R. Wu, J. Appl. Phys.,(2002),91(7), 4568 .
http://dx.doi.org/10.1063/1.1454184

P.K. Namburu, D.P. Kulkarni, D. Misra, D.K. Das, Exp. Therm.Fluid Sci. ,(2007), 32, 397.
http://dx.doi.org/10.1016/j.expthermflusci.2007.05.001

C.T. Nguyen, F. Desgranges, N. Galanis, G. Roy, T. Mare´d,S. Boucher, H.A. Mintsa, Int. J. Therm. Sci. (2008),47, 103.
http://dx.doi.org/10.1016/j.ijthermalsci.2007.01.033

S.E.B. Maiga, C.T. Nguyen, N. Galanis, G. Roy, SuperlatticesMicrostruct. ,(2004),35, 543.

S.Z. Heris, S.G. Etemad, M.N. Esfahany, Int. J. Heat Mass Transf., (2006),33, 529.
http://dx.doi.org/10.1016/j.icheatmasstransfer.2006.01.005

D.S. Wen, Y.L. Ding, Int. J. Heat Mass Transf. (2004) ,47, 5181,
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.07.012

Z. Bhimani, B. Wilson, Ind. Lubr. Tribol.,(1997) ,49, 288.

A. Hatch, A.E. Kamholz, G. Holman, P. Yager, K.F. Bo¨hringer,J. Microelectromech. Syst. (2001),10(2), 215.
http://dx.doi.org/10.1109/84.925748

J.S. Jiang, Z.F. Gan, Y. Yang, B. Du, M. Qian, P. Zhang, J. Nanopart. Res. (2009),11, 1321.
http://dx.doi.org/10.1007/s11051-008-9534-5

Z.F. Gan, J.S. Jiang, Y. Yang, B. Du, M. Qian, P. Zhang, J. Biomed. Mater. Res. (2008), 84A, 10.
http://dx.doi.org/10.1002/jbm.a.31181

Y. Yang, J.S. Jiang, B. Du, Z.F. Gan, M. Qian, P. Zhang,J. Mater. Sci. Mater. Med. (2009), 20(1), 301.
http://dx.doi.org/10.1007/s10856-008-3577-0

J. Philip, P.D. Shima, B. Raj, App. Phys. Lett. (2008) ,92, 043108.
http://dx.doi.org/10.1063/1.2838304

D.P. Kulkarni, R.S. Vajjha, D.K. Das, D. Oliva, Appl. Therm.Eng. (2008), 28, 1774.
http://dx.doi.org/10.1016/j.applthermaleng.2007.11.017

Eastman J.A., Choi S.U.S., Li S., Yu W.,Thompson L.J., Anomalously increased effective thermal conductivities of ethylene glycol – based nanofluids containing copper nanoparticles, Applied Physics letters ,(2001),78 (6), 718 – 720.
http://dx.doi.org/10.1063/1.1341218

Y. Xuan, W. Roetzel, Conception for heat transfer correlation of Nano fluid, Int. J. Heat Mass Transfer (2000), 43 (19) ,3701 – 3707.
http://dx.doi.org/10.1016/s0017-9310(99)00369-5

Y. Xuan, Q. Li, Investigation on convective heat transfer and flow features of Nano fluids, J. Heat Transfer (2003),125 ,151 – 155.
http://dx.doi.org/10.1115/1.1532008

D. Wen, Y. Ding, Experimental investigation into convective heat transfer of Nano fluid at the entrance rejoin under laminar flow conditions, Int. J. Heat Mass Transfer (2004),47 (24) ,5181 – 5188.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.07.012

Y. Yang, Z.G. Zhang, E.A. Grulke, W.B.Andersen, G. Wu, Heat transfer properties of nanoparticle in fluid dispersions (nanofluids)in laminar flow, Int. J. Heat Mass Transfer, (2005), 48(6) 1107 – 1116.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.09.038

A. Einstein, Investigation on the theory of Brownian motion, Dover, New York, (1956),pp.1 – 18.

H.C. Binkman, The viscosity of concentrated suspensions and solution. Chem. Phys(1952),20,571.

X.Wang, X.Xu, S.U.S.Choi, Thermal conductivity of nanoparticle –fluid mixture. Thermo phys . Heat transfer, (1999), 13,474 – 480.
http://dx.doi.org/10.2514/2.6486

G.K.Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J.Fluidmech.,(1977), 83 (1) , 97.
http://dx.doi.org/10.1017/s0022112077001062

J.M. Smith, H.C. Van Ness, Introduction to Chemical Engineering Thermodynamic, McGraw-Hill, New York, (1987).

E.J. Wasp, J.P. Kenny, R.L. Gandhi, Solid–liquid Slurry Pipeline Transportation, Bulk Materials Handling, Trans Tech Publications, Germany, (1999).

Hamilton, R.L. and O.K. Crosser, Thermal Conductivity of Heterogeneous 2-Component Systems.Industrial & Engineering Chemistry Fundamentals, 1(3): p. (1962),187,124
http://dx.doi.org/10.1021/i160003a005

J.C. Maxwell, A Treatise on Electricity and Magnetism, second ed.,Clarendon Press, Oxford, UK, (1881).

Timofeeva, E.V., A.N. Gavrilov, J.M. McCloskey, Y.V. Tolmachev, S. Sprunt,L.M. Lopatina, and J.V. Selinger, Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory. Physical Review E, 76(6): p. 16, (2007).
http://dx.doi.org/10.1103/physreve.76.061203

Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids,Int. J. Heat Mass Transfer (2000),43 3701–3707.
http://dx.doi.org/10.1016/s0017-9310(99)00369-5

B.C.Pak,Y.I Cho, Hydrodynamic and heat transfer study of dispersed fluids with sub micro metallic oxide particles, Exp. Heat transfer, (1998), 11, 151.
http://dx.doi.org/10.1080/08916159808946559

Abdulhassan, Abd. K, Sattar Al – Jabair , Khalid Sultan Experimental investigation of heat transfer,and Flow of nanofluids in horizontal circular tube, International Journal of Mechanical and Aerospace Engineering 6,( 2012).

R.K. Shah, M.S. Bhatti, Laminar convective heat transfer in ducts, in: S. Kakac,R.K. Shah, W. Aung (Eds.), Handbook of Single – Phase Convective Heat Transfer, Wiley, New York, (1987) .


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize