Open Access Open Access  Restricted Access Subscription or Fee Access

Interleaved High Gain DC/DC Boost Converter-Based Proton Exchange Membrane Fuel Cell Fault-Tolerant Control


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v17i5.22622

Abstract


Despite the development witnessed by fuel cell systems and considering them as a promising technology in the future. Faults management in Proton Exchange Membrane Fuel Cell systems remains the major obstacle to meeting durability and reliability requirements for their use and commercialization, especially in automotive applications. DC/DC converters are used for power conditioning purposes in fuel cell systems, and can be also used in fault management. This study presents a promising solution for managing the most common faults in fuel cell systems (flooding and drying phenomena). The Fault-tolerant control is applied to an Interleaved High Gain DC/DC Boost Converter (IHGBC) associated with the fuel cell in event of faults. The strategy applied to the DC/DC converter controls the fuel cell current and voltage operating points, mitigating the fuel cell fault. The current drawn by the fuel cell changes according to the fault occurrence. a low current density operation offers the possibility of mitigating the flood fault, while the high current density process has advantage of increasing the water production in the cathode and thus avoiding the membrane drying. The simulation and experimental results demonstrated the effectiveness of the proposed fault-tolerant control strategy in improving cell performance and restoring the optimal operation.
Copyright © 2022 Praise Worthy Prize - All rights reserved.

Keywords


Fault-Tolerant Control; PEM fuel cell; DC/DC Boost Converter; Flooding; Drying

Full Text:

PDF


References


N. Y. Steiner, D. Hissel, P. Mocoteguy, and D. Candusso, Diagnosis of polymer electrolyte fuel cells failure modes (flooding & drying out) by neural networks modelling, Int. J. Hydrogen Energy, vol.36, 2011, pp. 3067-3075.
https://doi.org/10.1016/j.ijhydene.2010.10.077

J. Kumaresan, and C. Govindaraju, Development of a Power Management Algorithm for PV/Battery Powered Plug-In Dual Drive Hybrid Electric Vehicle (DDHEV), Electric Power Components and Systems., vol. 48, 70-85, 2020, pp. 1-2.
https://doi.org/10.1080/15325008.2020.1736212

D. Guilber, A. Gaillard, A. Mohammadi, A. N'Diaye, and A. Djerdir. Investigation of the interactions between proton exchange membrane fuel cell and interleaved DC/DC boost converter in case of power switch faults, Int J Hydrogen Energy, 2015, pp. 519-37.
https://doi.org/10.1016/j.ijhydene.2014.10.072

E. Dijoux, N.Y. Steiner, M. Benne, M.C. Pera, and B.G. Perez, A review of fault tolerant control strategies applied to PEMFCs, Journal of Power Sources, 2017, pp. 119-133.
https://doi.org/10.1016/j.jpowsour.2017.05.058

N. Y. Steiner, Ph. Moçotéguy, D. Candusso, D. Hissel, A. Hernandez, and A. Aslanides, A review on PEM voltage degradation associated with water management: Impacts, influent factors and characterization, Journal of Power Sources, vol, 183(1), 2018, pp. 260-274.
https://doi.org/10.1016/j.jpowsour.2008.04.037

R. Saadi, M.Y. Hammoudi, O. Kraa et al., A robust control of a 4-leg floating interleaved boost converter for fuel cell electric vehicle application, Mathematics and Computers in Simulation, 2019.
https://doi.org/10.1016/j.matcom.2019.09.014

C. Lebreton, On-line fault-tolerant control of a PEM fuel cell, Contribution to water management, Ph.D. dissertation, Dept. Energetic and Automatic., University of Reunion., 2015.

L. Zhang, M. Pan, and S. Quan, Model predictive control of water management in PEMFC, Journal of Power Sources., 180 (1), 2008, pp. 322-329.
https://doi.org/10.1016/j.jpowsour.2008.01.088

A. A. Smadi, F. Khoucha, A. Benrabah, and M. E. H. Benbouzid, An Improved Model for Fault Tolerant Control of Flooding and Drying Phenomena in the Proton Exchange Membrane Fuel Cell, Advances in Renewable Hydrogen and Other Sustainable Energy Carriers, (Chap. 35, ISBN 978-981-15-6594-6, Springer Proceedings in Energy, Singapore, 2021, p. 271-278).
https://doi.org/10.1007/978-981-15-6595-3_35

X. R. Wang, Y. Ma, J. Gao, T. Li, G.Z. Jiang, and Z.Y. Sun, Review on water management methods for proton exchange membrane fuel cells, International Journal of Hydrogen Energy, vol. 46, 2020, pp. 12206-12229.
https://doi.org/10.1016/j.ijhydene.2020.06.211

M. Y. Hammoudi, R. Saadi, A. J. M. Cardoso, M. E. H. Benbouzid, and M. Sahraoui, Practical implementation of H-infinity control for fuel cell interleaved boost converter, International Journal of Modelling and Simulation, vol. 40, n°1, 2020, pp. 44-61.
https://doi.org/10.1080/02286203.2018.1547871

S. Pourjafar, H. M. Kojabadi, M. Maalandish, M. Abarzadeh and F. Blaabjerg, Non-Isolated Coupled Inductor Based DC-DC Converter with High Voltage Conversion Ratio Recommended for Renewable Applications, Electric Power Components and Systems, vol. 48, 2020, pp. 16-17, 1695-1707.

M. Bougrine, A. Benalia, E. Delaleau, and M. E. H. Benbouzid, Minimum time current controller design for two-interleaved bidirectional converter: Application to hybrid fuel cell/supercapacitor vehicles, International Journal of Hydrogen Energy, vol. 43, n°25, June 2018, pp. 11593-11605.
https://doi.org/10.1016/j.ijhydene.2017.07.188

F. Khoucha, H. Alloui, B. Yagoubi, and M. E. H. Benbouzid, Fault-tolerant control experimental validation of a six-phase interleaved mirror DC-DC boost converter for fuel cell applications, in Proceedings of the 2018 IEEE IREC, pp. 1-6, March 2018, Hammamet, Tunisia.

D. Guilbert, M. Guarisco, A. Gaillard, A. N'Diaye, and A. Djerdir, FPGA based fault tolerant control on an interleaved DC/DC boost converter for fuel cell electric vehicle applications, Int. J. Hydrogen Energy, vol, 40 (45), 2015, pp. 15815-15822.
https://doi.org/10.1016/j.ijhydene.2015.03.124

D. Guilbert, A. Gaillard, A. N'Diaye, and A. Djerdir. Power switch failures tolerance and remedial strategies of a 4-leg floating interleaved DC/DC boost converter for photovoltaic/fuel cell applications, Renew Energy, vol. 90, 2016, pp. 14-27.
https://doi.org/10.1016/j.renene.2015.12.054

D. Yang, Y. Wang, and Z. Chen. Robust fault diagnosis and fault tolerant control for PEMFC system based on an augmented LPV observer, Int J Hydrogen Energy., vol. 45(24), 2020, pp. 13508-22.
https://doi.org/10.1016/j.ijhydene.2020.03.063

M. Bressel, M. Hilairet, D. Hissel, and B. Ould Bouamama, Model based aging tolerant control with power loss prediction of Proton Exchange Membrane Fuel Cell, Int J Hydrogen Energy, vol. 45, 2020, pp. 11242-54.
https://doi.org/10.1016/j.ijhydene.2018.11.219

L. Xu, J. Li, M. Ouyang, J. Hua, and X. Li. Active fault tolerance control system of fuel cell hybrid city bus, Int J Hydrogen Energy, vol. 35(22), 2010, pp. 12510-20.
https://doi.org/10.1016/j.ijhydene.2010.08.005

C. Yan, J. Chen, H. Liu, and H. Lu, Model-based fault tolerant control for the thermal management of PEMFC systems, IEEE Trans. Ind. Electron, pp. 2875-2884, 2019.
https://doi.org/10.1109/TIE.2019.2912772

H. Aouzellag, K. Ghedamsi, and D. Aouzellag, Energy management and fault tolerant control strategies for fuel cell/ultracapacitor hybrid electric vehicles to enhance autonomy, efficiency and life time of the fuel cell system, Int J Hydrogen Energy, vol. 40(22), 2015, pp. 7204-13.
https://doi.org/10.1016/j.ijhydene.2015.03.132

FD. Bianchi, C. Ocampo-Martinez, C. Kunusch, and RS. Sanchez Pena, Fault-tolerant unfalsified control for PEM fuel cell systems, IEEE Trans Energy Convers, vol. 30(1), 2015, pp. 1-9.
https://doi.org/10.1109/TEC.2014.2351838

S. Fukuhara, N. Marx, K. Ettihir, L. Boulon, Y. Ait-Amirat, and M. Becherif, A lumped fluidic model of an anode chamber for fault tolerant strategy design, Int. J. Hydrogen Energy, vol. 41 (9), 2016, pp. 5037-5047.
https://doi.org/10.1016/j.ijhydene.2016.01.110

D. Rotondo, V. Puig, and F. Nejjari, Fault tolerant control of a PEM fuel cell using qLPV virtual actuators, IFAC-Papers Online, vol. 48(21), 2015, pp. 271-6.
https://doi.org/10.1016/j.ifacol.2015.09.539

C. Lebreton, M. Benne, C. Damour, N.Y. Steiner, B. Grondin Perez, and D. Hissel, Fault tolerant control strategy applied to PEMFC water management, Int J Hydrogen Energy, vol. 40(33), 2015 pp. 10636-46.
https://doi.org/10.1016/j.ijhydene.2015.06.115

X. Wu, and B. Zhou, Fault tolerance control for proton exchange membrane fuel cell systems, Journal of Power Sources, vol. 324, 2016 pp. 804-829.
https://doi.org/10.1016/j.jpowsour.2016.05.066

J. Pukrushpan, A. Stefanopoulou, and H. Peng, Control of fuel cell power systems: principles, modelling and analysis and feedback design, Springer, 2004.
https://doi.org/10.1007/978-1-4471-3792-4

I. Matraji, S. Laghrouche, andM. Wack, Pressure control in a PEM fuel cell via second order sliding mode, Int. J. Hydrogen Energy, 2012.
https://doi.org/10.1016/j.ijhydene.2012.08.007

T. Nguyen, and R.A. White, water and heat management model for proton-exchange-membrane fuel cells, Journal of Electrochemical Society, 1993, pp. 2178-2186.
https://doi.org/10.1149/1.2220792

S. Shimpalee, S. Dutta, Numer. Heat Transfer Part A 38, 2000, pp. 111-128.
https://doi.org/10.1080/10407780050135360

J.C. Amphlett, R.M. Baumert, R.F. Mann, B.A. Peppley, and P.R. Roberge, Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell, J. Electrochem. Soc, vol. 142 (1), 1995, pp. 9-15.
https://doi.org/10.1149/1.2043959

J. Pukrushpan, H. Peng, and A. Stefanopoulou, Control-oriented modeling and analysis for automotive fuel cell systems, J. Dyn. Syst. Meas. Control, 126 (1), 2004.
https://doi.org/10.1115/1.1648308

A.J. del Real, A. Arce, and C. Bordons, Development and experimental validation of a PEM fuel cell dynamic model, Journal of Power Sources, 2007, pp. 310-324.
https://doi.org/10.1016/j.jpowsour.2007.04.066

N. Tewari, and V.T Sreedevi, A novel single switch dc-dc converter with high voltage gain capability for solar PV based power generation systems, Sol. Energy, vol. 171, 2018, pp. 466-477.
https://doi.org/10.1016/j.solener.2018.06.081

F. Barbir, H. Gorgun, and X. Wang, Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells, Journal of Power Sources, vol. 141(1), 2015, pp. 96-101.
https://doi.org/10.1016/j.jpowsour.2004.08.055

A. Gebregergis, P. Pillay, and R. Rengaswamy, PEMFC Fault Diagnosis, Modeling, and Mitigation, IEEE Transactions on Industry Applications, vol. 46(1), 2010, pp. 295-303.
https://doi.org/10.1109/TIA.2009.2036677

D. Guilbert, A. Gaillard, A. N'Diaye, and A. Djerdir, Fault-tolerant control for PEMFC and its DC/DC converter, In: Proceedings of IEEE 5th International Youth Conference on Energy (IYCE), pp. 1-6, 2015.
https://doi.org/10.1109/IYCE.2015.7180758

H. Djoudi, N.l Benyahia, A. Badji, A. Bousbaine, R. Moualek, S. Aissou and N. Benamrouche, Simulation and Experimental Investigation into a Photovoltaic and Fuel Cell Hybrid Integration Power System for a Typical Small House Application, Electric Power Components and Systems, vol. 48, 2020, pp. 14-15, 1598-1613.
https://doi.org/10.1080/15325008.2020.1857471

P. Chuang, A. Turhan, A. Heller, J. Brenizer, T. Trabold, and M. Mench, Proceedings of the ASME Conference on Fuel Cell Science, Engineering and Technology, 2005.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize