Open Access Open Access  Restricted Access Subscription or Fee Access

Nanocomposites Use for the Creation of a Nanocomposite Fuel Cell Membrane in Advanced Hydrogen Technology


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v17i4.22145

Abstract


Development of high-impact base metal catalysts as an alternative to their platinum analogs in fuel cells for Oxygen Reduction Reaction (ORR) and Hydrogen Evolution Reaction (HER) is a desirable but extremely challenging task. Cutting-edge technology and improvements in nanocomposites open the way for use of nanocomposite-based membranes, which facilitate the hydrogen and oxygen reduction reaction to increase the stability of reactions in fuel cell at high temperatures but have drawbacks due to unstable conditions of the relative moisture level, which affects the change in nanocomposite properties. This paper focuses on research into CsPW-Nafion nanocomposite membrane with stable structure and properties for fuel cell applications for hydrogen production purposes. Rather low efficiency of membranes in hydrogen and oxygen evolution reactions in the fuel cell is a pressing problem, which requires alternative solutions in development of nanocomposite membranes to improve stability and conductivity properties. The findings of experimental research into the oxidation stability of nanocomposite membrane suggest that CsPW nanocomposite membrane has a high stability to oxidizing agents by reducing the diffusion of H2O2. Nanocomposite membrane has a fairly reliable performance at low relative humidity and high temperatures, which is due to compound with hydrophilic CsHP particles that tend to retain large amounts of water to maintain the membrane in a hydrated state. The authors were the first to suggest methodology for creating a nanocomposite cesium hydrogen salt membrane based on heteropoly acid with Nafion (CsPW-Nafion) for hydrogen technology fuel cell.
Copyright © 2022 Praise Worthy Prize - All rights reserved.

Keywords


Fuel Cell; Ion Exchange Reaction; Nafion; Nanocomposite Membrane; Oxidation Stability

Full Text:

PDF


References


L. Zhang, J. Zhu, Z. Wang, W. Zhang, 2D MoSe2/CoP intercalated nanosheets for efficient electrocatalytic hydrogen production, International Journal of Hydrogen Energy, vol. 45 n. 38, 2020, pp. 19246-19256.
https://doi.org/10.1016/j.ijhydene.2020.05.059

J. Zhang, G. Chen, K. Müllen, X. Feng, Carbon-rich nanomaterials: fascinating hydrogen and oxygen electrocatalysts, Advanced Materials, vol. 30 n. 40, 2018, art no. 1800528.
https://doi.org/10.1002/adma.201800528

M. Borghei, J. Lehtonen, L. Liu, O.J. Rojas, Advanced biomass-derived electrocatalysts for the oxygen reduction reaction, Advanced Materials, vol. 30 n. 24, 2018, art no. 1703691.
https://doi.org/10.1002/adma.201703691

G. Dey, A. Aijaz, Metal-organic framework derived nanostructured bifunctional electrocatalysts for water splitting, ChemElectroChem, vol. 8 n. 20, 2021, pp. 3782-3803.
https://doi.org/10.1002/celc.202100687

N. Shaari, S.K. Kamarudin, Recent advances in additive-enhanced polymer electrolyte membrane properties in fuel cell applications: An overview, International Journal of Energy Research, vol. 43 n. 7, 2019, pp. 2756-2794.
https://doi.org/10.1002/er.4348

S. Popov, O. Baldynov, The hydrogen energy infrastructure development in Japan. In E3S Web of Conferences (EDP Sciences, 2018, vol. 69, art no. 02001).
https://doi.org/10.1051/e3sconf/20186902001

K.W. Cao, H.Y. Sun, Q. Xue, Y. Ding, T.J. Wang, F.M. Li, G.R. Xu, P. Chen, Y. Yang, Y. Chen, Functionalized ultrafine rhodium nanoparticles on graphene aerogels for the hydrogen evolution reaction, ChemElectroChem, vol. 8 n. 10, 2021, pp. 1759-1765.
https://doi.org/10.1002/celc.202100080

Z. Yu, K. Mao, Y. Feng, Single-source-precursor synthesis of porous W-containing SiC-based nanocomposites as hydrogen evolution reaction electrocatalysts, Journal of Advanced Ceramics, vol. 10 n. 6, 2021, pp. 1338-1349.
https://doi.org/10.1007/s40145-021-0508-8

R. Shoukat, M.I. Khan, Carbon nanotubes: A review on properties, synthesis methods and applications in micro and nanotechnology, Microsystem Technologies, vol. 27 n. 12, 2021, pp. 4183-4192.
https://doi.org/10.1007/s00542-021-05211-6

K. Pourzare, Y. Mansourpanah, S. Farhadi, Advanced nanocomposite membranes for fuel cell applications: a comprehensive review, Biofuel Research Journal, vol. 3 n. 4, 2016, pp. 496-513.
https://doi.org/10.18331/BRJ2016.3.4.4

L.G. Guex, B. Sacchi, K.F. Peuvot, R.L. Andersson, A.M. Pourrahimi, V. Ström, S. Farris, R.T. Olsson, Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry, Nanoscale, vol. 9 n. 27, 2017, pp. 9562-9571.
https://doi.org/10.1039/C7NR02943H

L. Zhang, Y. Wang, J. Li, X. Ren, H. Lv, X. Su, Y. Hu, D. Xu, B. Liu, Ultrasmall ru nanoclusters on nitrogen-enriched hierarchically porous carbon support as remarkably active catalysts for hydrolysis of ammonia borane, ChemCatChem, vol. 10 n. 21, 2018, pp. 4910-4916.
https://doi.org/10.1002/cctc.201801192

C. Zhu, Q. Xian, Q. He, C. Chen, W. Zou, C. Sun, S. Wang, X. Duan, Edge-rich bicrystalline 1T/2H-MoS2 cocatalyst-decorated {110} terminated CeO2 nanorods for photocatalytic hydrogen evolution, ACS Applied Materials & Interfaces, vol. 13 n. 30, 2021, pp. 35818-35827.
https://doi.org/10.1021/acsami.1c09651

M.R. Gao, J.X. Liang, Y.R. Zheng, Y.F. Xu, J. Jiang, Q. Gao, J. Li, S.H. Yu, An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation, Nature Communications, vol. 6 n. 1, 2015, art no. 5982.
https://doi.org/10.1038/ncomms6982

W. Song, K. Wang, G. Jin, Z. Wang, C. Li, X. Yang, C. Chen, Two-step hydrothermal synthesis of CoSe/MoSe2 as hydrogen evolution electrocatalysts in acid and alkaline electrolytes, ChemElectroChem, vol. 6 n. 18, 2019, pp. 4842-4847.
https://doi.org/10.1002/celc.201901382

L. Jia, X. Sun, Y. Jiang, S. Yu, C. Wang, A novel MoSe2-reduced graphene oxide/polyimide composite film for applications in electrocatalysis and photoelectrocatalysis hydrogen evolution, Advanced Functional Materials, vol. 25 n. 12, 2015, pp. 1814-1820.
https://doi.org/10.1002/adfm.201401814

D. Wang, A. Wei, L. Tian, A. Mensah, D. Li, Y. Xu, Q. Wei, Nickel-cobalt layered double hydroxide nanosheets with reduced graphene oxide grown on carbon cloth for symmetric supercapacitor, Applied Surface Science, vol. 483, 2019, pp. 593-600.
https://doi.org/10.1016/j.apsusc.2019.03.345

X.Z. Song, W.Y. Zhu, X.F. Wang, Z. Tan, Recent advances of CeO2-based electrocatalysts for oxygen and hydrogen evolution as well as nitrogen reduction, ChemElectroChem, vol. 8 n. 6, 2021, pp. 996-1020.
https://doi.org/10.1002/celc.202001614

Ravichandran, A., Storey, J., Kirk, D., A Thermo-Fluid Model of Droplet Evaporation and Pressure Variation in Venturi Liquid-Gas Mixers, (2020) International Review of Aerospace Engineering (IREASE), 13 (3), pp. 108-119.
https://doi.org/10.15866/irease.v13i3.18758

Udaiyakumar, K., Iyer, K., Akhil, V., Motwani, A., Bhaise, V., Numerical Simulation and Contour Design of Aerospike Nozzle: a Behavioural Study on Truncation Effects of Nozzle, (2020) International Review of Aerospace Engineering (IREASE), 13 (4), pp. 141-149.
https://doi.org/10.15866/irease.v13i4.17343

Acosta Calderón, L., Clavijo Vargas, A., Salazar Concha, S., Ramírez-Pastran, J., Villarreal-López, J., Design of a Transmission System for a BAJA-SAE Prototype, (2021) International Review of Mechanical Engineering (IREME), 15 (4), pp. 177-188.
https://doi.org/10.15866/ireme.v15i4.20387

Vimalraj, C., Kah, P., Mvola Belinga, E., Layus, P., Eskelinen, H., Investigation on Microstructure and Mechanical Properties of Gas Metal Arc Welded Dissimilar Aluminium Alloys, (2019) International Review of Mechanical Engineering (IREME), 13 (2), pp. 126-132.
https://doi.org/10.15866/ireme.v13i2.15829

Caroko, N., Saptoadi, H., Rohmat, T., A Review on Microwave-Assisted Co-Pyrolysis of Biomass-Polymers, (2020) International Review of Mechanical Engineering (IREME), 14 (5), pp. 339-350.
https://doi.org/10.15866/ireme.v14i5.19002

Y.M. Zhao, L.M. Liao, G.Q. Yu, P.J. Wei, J.G. Liu, B-Doped Fe/N/C porous catalyst for high-performance oxygen reduction in anion-exchange membrane fuel cells, ChemElectroChem, vol. 6 n. 6, 2019, pp. 1754-1760.
https://doi.org/10.1002/celc.201801688

Y. Wang, Z.X. Low, S. Kim, H. Zhang, X. Chen, J. Hou, J.G. Seong, Y.M. Lee, G.P. Simon, C.H.J. Davies, H. Wang, Functionalized boron nitride nanosheets: a thermally rearranged polymer nanocomposite membrane for hydrogen separation, Angewandte Chemie, vol. 130 n. 49, 2018, pp. 16288-16293.
https://doi.org/10.1002/ange.201809126

S. Abinaya, P. Moni, V. Parthiban, A.K. Sahu, M. Wilhelm, Metal silicide nanosphere decorated carbon-rich polymer-derived ceramics: Bifunctional electrocatalysts towards oxygen and their application in anion exchange membrane fuel cells, ChemElectroChem, vol. 6 n. 13, 2019, pp. 3268-3278.
https://doi.org/10.1002/celc.201900475

R. Grover, O. Nanda, N. Gupta, K. Saxena, Hydrogen peroxide sensing properties of PVA/TiO2/I2 nanocomposite-based free standing membranes, Journal of Applied Polymer Science, vol. 132 n. 28, 2015, art no. 42257.
https://doi.org/10.1002/app.42257

U. Divya Madhuri, T.P. Radhakrishnan, Insulating polymer-hydrogel nanocomposite thin film-based catalytic electrode for efficient oxygen evolution reaction, ChemElectroChem, vol. 6 n. 7, 2019, pp. 1984-1989.
https://doi.org/10.1002/celc.201801659

R. Asmatulu, A. Khan, V.K. Adigoppula, G. Hwang, Enhanced transport properties of grapheme-based, thin Nafion® membrane for polymer electrolyte membrane fuel cells, International Journal of Energy Research, vol. 42 n. 2, 2018, pp. 508-519.
https://doi.org/10.1002/er.3834

Z. Mossayebi, M.J. Parnian, S. Rowshanzamir, Effect of the sulfated zirconia nanostructure characteristics on physicochemical and electrochemical properties of SPEEK nanocomposite membranes for PEM fuel cell applications, Macromolecular Materials and Engineering, vol. 303 n. 5, 2018, art no. 1700570.
https://doi.org/10.1002/mame.201700570

S. Sarirchi, S. Rowshanzamir, F. Mehri, Simultaneous improvement of ionic conductivity and oxidative stability of sulfonated poly (ether ether ketone) nanocomposite proton exchange membrane for fuel cell application, International Journal of Energy Research, vol. 44 n. 4, 2020, pp. 2783-2800.
https://doi.org/10.1002/er.5094

M.S. Tiwari, G.D. Yadav, Kinetics of Friedel-Crafts benzoylation of veratrole with benzoic anhydride using Cs2. 5H0. 5PW12O40/K-10 solid acid catalyst, Chemical Engineering Journal, vol. 266, 2015, pp. 64-73.
https://doi.org/10.1016/j.cej.2014.12.043

M. Nisar, I. Ali, M. R. Shah, M. Qayum, M. Zia-Ul-Haq, U. Rashid, M. Islam, Efficient PPA-SiO2-catalyzed synthesis of β-enaminones under solvent-free conditions, Molecules, vol. 18 n. 12, 2013, pp. 15182-15192.
https://doi.org/10.3390/molecules181215182

M.D.T. Nguyen, D. Kim, Cross-linked poly (arylene ether ketone) proton exchange membranes sulfonated on polymer backbone, pendant, and cross-linked sites for enhanced proton conductivity, Solid State Ionics, vol. 270, 2015, pp. 66-72.
https://doi.org/10.1016/j.ssi.2014.12.012

G.A. Giffin, S. Galbiati, M. Walter, K. Aniol, C. Ellwein, J. Kerres, R. Zeis, Interplay between structure and properties in acid-base blend PBI-based membranes for HT-PEM fuel cells, Journal of Membrane Science, vol. 535, 2017, pp. 122-131.
https://doi.org/10.1016/j.memsci.2017.04.019

S.H. Mirfarsi, M.J. Parnian, S. Rowshanzamir, Self-humidifying proton exchange membranes for fuel cell applications: Advances and challenges, Processes, vol. 8 n. 9, 2020, art no. 1069.
https://doi.org/10.3390/pr8091069

J. Kintrup, M. Millaruelo, V. Trieu, A. Bulan, E.S. Mojica, Gas diffusion electrodes for efficient manufacturing of chlorine and other chemicals, The Electrochemical Society Interface, vol. 26 n. 2, 2017, pp. 73-76.
https://doi.org/10.1149/2.F07172if

J. Feng, X. Yan, K. Lin, S. Wang, J. Luo, Y. Wu, Characterization of poly (lactic acid) melt spun fiber aligned scaffolds prepared with hot pressing method, Materials Letters, vol. 214, 2018, pp. 178-181.
https://doi.org/10.1016/j.matlet.2017.12.005

S.S. Kumar, V. Himabindu, Hydrogen production by PEM water electrolysis-A review, Materials Science for Energy Technologies, vol. 2 n. 3, 2019, pp. 442-454.
https://doi.org/10.1016/j.mset.2019.03.002

X.X. Wang, M.T. Swihart, G. Wu, Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation, Nature Catalysis, vol. 2 n. 7, 2019, pp. 578-589.
https://doi.org/10.1038/s41929-019-0304-9

S. Kumar, S. N. Bhange, R. Soni, S. Kurungot, WO3 nanorods bearing interconnected PT nanoparticle units as an activity-modulated and corrosion-resistant carbon-free system for polymer electrolyte membrane fuel cells, ACS Applied Energy Materials, vol. 3 n. 2, 2020, pp. 1908-1921.
https://doi.org/10.1021/acsaem.9b02333

Y. Devrim, S. Erkan, N. Baç, I. Eroglu, Nafion/titanium silicon oxide nanocomposite membranes for PEM fuel cells, International Journal of Energy Research, vol. 37 n. 5, 2013, pp. 435-442.
https://doi.org/10.1002/er.2909

L. Mazzapioda, S. Panero, M. A. Navarra, Polymer electrolyte membranes based on nafion and a superacidic inorganic additive for fuel cell applications, Polymers, vol. 11 n. 5, 2019, art no. 914.
https://doi.org/10.3390/polym11050914

M. Tohidian, S. R. Ghaffarian, Surface modified multi-walled carbon nanotubes and Nafion nanocomposite membranes for use in fuel cell applications, Polymers for Advanced Technologies, vol. 29 n. 4, 2018, pp. 1219-1226.
https://doi.org/10.1002/pat.4232

C. Artner, B. Bohrer, L. Pasquini, I. Mazurenko, N. Lahrach, D. Byrne, A. de Poulpiquet, E. Lojou, Effects of interactions between SPEEK or Nafion ionomers and bilirubin oxidase on O2 enzymatic reduction. Electrohimica Acta, vol. 426, 2022, art no. 140787.
https://doi.org/10.1016/j.electacta.2022.140787

I. Khan, J.H. Lee, J. Park, S. Wooh, Nano/microstructural engineering of Nafion membranes for advanced electrochemical applications. Journal of Saudi Chemical Society, vol. 26 n. 4, 2022, art no. 101511.
https://doi.org/10.1016/j.jscs.2022.101511


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize