Open Access Open Access  Restricted Access Subscription or Fee Access

Implementation of Extreme Learning Machine to Predict Distribution Power Transformer Lifetime


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v17i5.22021

Abstract


The estimated remaining life of transformers is the most critical factor in maintaining service continuity and quality assurance in distributing electrical energy to customers. Therefore, an accurate approach is needed to predict the remaining life of a distribution power transformer. In this paper, an approach to predict transformer lifetime is carried out by utilizing transformer current, voltage, and temperature. The resulting model estimates the transformer age through Extreme Learning Machine in order to extract the maximum information from the transformer. Tests were performed using the proposed and other classification methods on a 20 kV/380-220V transformer whose remaining life spans between 14 and 26 years. Results show that the proposed method yields the lowest minimum error outperforming the other methods with the selection feature MAE at 0.1076 and MSE at 0.0179. The results further validate that the proposed method can achieve accuracy better than the ones obtained from other transformer remaining service life prediction methods.
Copyright © 2022 Praise Worthy Prize - All rights reserved.

Keywords


Distribution Power Transformer; Extreme Learning Machine; Lifetime; Prediction; Remaining Service Life

Full Text:

PDF


References


K. Benhmed, A. Mooman, A. Younes, K. Shaban, A. El-Hag, Feature selection for effective health index diagnoses of power transformers, IEEE Trans. Power Del., Vol. 33, No. 6, pp. 3223-3226, 2018.
https://doi.org/10.1109/TPWRD.2017.2762920

D. A. Mansour, Development of a new graphical technique for dissolved gas analysis in power transformers based on the five combustible gases, IEEE Trans. Dielectr. Electr. Insul., Vol. 22, No. 5, pp. 2507-2512, 2015.
https://doi.org/10.1109/TDEI.2015.004999

Khemmook, P., Khomfoi, S., Solid State Transformers Using Selective Harmonic Elimination Technique for Solar Farm Applications, (2020) International Review of Electrical Engineering (IREE), 15 (6), pp. 443-455.
https://doi.org/10.15866/iree.v15i6.17654

Uman Putra, D., Fikri, M., Hidayatullah, A., Soeprijanto, A., Design of Home Power Energy Management System Using Mixed Integer Linear Programming (MILP) Based on Extreme Learning Machine (ELM) Dynamic Pricing, (2019) International Review of Automatic Control (IREACO), 12 (4), pp. 174-181.
https://doi.org/10.15866/ireaco.v12i4.16550

L. Jauregui-Rivera, X. Mao, D. Tylavsky, Improving Reliability Assessment Of Transformer Thermal Top-Oil Model Parameters Estimated From Measured Data, IEEE Trans. Pow. Del., Vol. 24, No. 1, pp. 169-176, 2009.
https://doi.org/10.1109/TPWRD.2008.2005686

R. Medina, A. Romero, E. Mombello, G. Ratta, Assessing degradation of power transformer solid insulation considering thermal stress and moisture variation, Electr. Pow. Syst. Res., Vol. 151, pp. 1-11, 2017.
https://doi.org/10.1016/j.epsr.2017.04.006

V. M. Catterson, J. Melone, M. S. Garcia, Prognostics of transformer paper insulation using statistical particle filtering of online data, IEEE Elect. Insul. Mag., Vol. 32, No. 1, pp. 28-33, 2016.
https://doi.org/10.1109/MEI.2016.7361101

W. H. Tang, K. Spurgeon, Q. H. Wu, Z. J. Richardson, An evidential reasoning approach to transformer condition assessments, IEEE Trans. Pow. Del., Vol. 19, No. 4, pp. 1696-1703, 2004.
https://doi.org/10.1109/TPWRD.2003.822542

Y. Biçen, F. Aras, H. Kirkici, Lifetime estimation and monitoring of power transformer considering annual load factors, IEEE Trans. Dielectr. Electr. Insul., Vol. 21, No. 3, pp. 1360-1367, 2014.
https://doi.org/10.1109/TDEI.2014.6832284

J. H. Friedman, Greedy function approximation: A gradient boosting machine, Ann. Stat., Vol. 29, No. 5, pp. 1189-1232, 2001.
https://doi.org/10.1214/aos/1013203451

R. E. Schapire and Y. Freund, Boosting: Foundations and Algorithms, (MIT Press, 2012).
https://doi.org/10.7551/mitpress/8291.001.0001

Hell, P. Costa, F. Gomide, Participatory learning in power transformers thermal modeling, IEEE Trans. Power Del., Vol. 23, No. 4, pp. 2058-2067, 2008.
https://doi.org/10.1109/TPWRD.2008.923994

A. Bracale, G. Carpinelli, M. Pagano, P. D. Falco, A probabilistic approach for forecasting the allowable current of oil-immersed transformers, IEEE Trans. Power Del., Vol. 33, No. 4, pp. 1825-1834, 2018.
https://doi.org/10.1109/TPWRD.2018.2791181

D. Villacci, G. Bontempi, A. Vaccaro, M. Birattari, The role of learning methods the dynamic assessment of power components loading capability, IEEE Trans. Ind. Electron., Vol. 52, No. 1, pp. 280-290, 2005.
https://doi.org/10.1109/TIE.2004.841072

Fernández-Blanco, J., Corrales-Barrios, L., Benítez-Pina, I., Núñez-Alvarez, J., Hernández-González, F., Llosas-Albuerne, Y., A Proposal for the Diagnosis of Incipient Faults in Power Transformers Using Fuzzy Logic Techniques, (2022) International Review of Electrical Engineering (IREE), 17 (1), pp. 29-38.
https://doi.org/10.15866/iree.v17i1.20772

G. B. Huang, H. Zhou, X. Ding, R. Zhang, Extreme learning machine for regression and multiclass classification, IEEE Trans. Syst., Man, Cybern. B. Cybern., vol. 42, no. 2, pp. 513-529, 2012.
https://doi.org/10.1109/TSMCB.2011.2168604

G. B. Huang, Q. Y. C. K. Zhuand Siew, Extreme learning machine: Theory and applications, Neurocomputing, vol. 70, pp. 489-501, 2006.
https://doi.org/10.1016/j.neucom.2005.12.126

G.-B. Huang, Z. Bai, L. L. C. Lekamalage, C. M. Kasun, Local receptive fields based extreme learning machine, IEEE Comput. Intell. Mag., vol. 10, no. 2, pp. 18-29, 2015.
https://doi.org/10.1109/MCI.2015.2405316

Y. Q. Chen, O. Fink, G. Sansavini, Combined Fault Location and Classification for Power Transmission Lines Fault Diagnosis With Integrated Feature Extraction, IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 561-569, 2018.
https://doi.org/10.1109/TIE.2017.2721922

Q. Tong, J. Cao, B. Han, X. Zhang, Z. Nie, J. Wang, Y. Lin, W. Zhang, A fault diagnosis approach for rolling element bearings based on RSGWPT-LCD bilayer screening and extreme learning machine, IEEE Access, vol. 5, pp. 5515-5530, 2017.
https://doi.org/10.1109/ACCESS.2017.2675940

S. S. Udmale, S. K. Singh, Application of spectral kurtosis and improved extreme learning machine for bearing fault classification, IEEE Trans. Instrum. Meas., vol. 68, no. 11, pp. 4222-4233, 2019.
https://doi.org/10.1109/TIM.2018.2890329

G. Sheng, Q. Hong, M. Wei, Research on ELM soft fault diagnosis of analog circuit based on KSLPP feature extraction, IEEE Access, vol. 7, pp. 92517-92527, 2019.
https://doi.org/10.1109/ACCESS.2019.2923242

S. Li, G. Wu, B. Gao, C. Hao, D. Xin, X. Yin, Interpretation of DGA for transformer fault diagnosis with complementary SaE-ELM and arctangent transform, IEEE Trans. Dielectr. Electr. Insul., vol. 23, no. 1, pp. 586-595, 2016.
https://doi.org/10.1109/TDEI.2015.005410

A. Tjahjono, W. A. Septian, Rosmaliati, N. W. Rika, T. Taufik, Modeling the Temperature of the Distribution Transformer Oil Using Transformer Body Temperature and Power Quality Parameters Based on Artificial Neural Network, Int. Conf. on Tech. and Policies in Electric Power & Energy, pp. 1-6, 2019.
https://doi.org/10.1109/IEEECONF48524.2019.9102485

T. S. Anwar, Rosmaliati, A. F. Adila, V. Lystianingrum, A. Privadi, M. H. Purnomo, Design and Implementation of a Piezoelectric Accelerometer Using Arduino Mega for Detection of Vibration on the 20 kV Transformer Tank, Int. Seminar on Intelligent Technology and Its Applications (ISITIA), pp. 413-418, 2018.
https://doi.org/10.1109/ISITIA.2018.8710863

G.-B. Huang, Q. Zhu, C. Siew, Extreme Learning Machine: Theory and Applications, Neurocomputing, Vol. 70, pp. 489-501, 2006.
https://doi.org/10.1016/j.neucom.2005.12.126

D.E. Ratnawati, Marjono M., Widodo W., S. Anam, PSO-ELM with Time-varying Inertia Weight for Classification of SMILES Codes, Int. Journal of Intelligent Engineering and Systems, Vol. 13, No. 6, pp. 522-531, 2019.
https://doi.org/10.22266/ijies2020.1231.46

Mora, E., Ordóñez Bueno, M., Gómez, C., Structural Vulnerability Assessment Procedure for Large Areas Using Machine Learning and Fuzzy Logic, (2021) International Review of Civil Engineering (IRECE), 12 (6), pp. 358-370.
https://doi.org/10.15866/irece.v12i6.19265


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize