Open Access Open Access  Restricted Access Subscription or Fee Access

Energy-Efficient 2×4 and 3×8 QCA-Based Decoder Designs


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v17i4.21471

Abstract


QCA technology is a promising technology for implementing compact, energy-efficient and high-speed nano-scale digital circuits. This paper proposes various single-and multi-layer 2×4 and 3×8 QCA-based decoder structures. These structures are implemented based on a compact and energy-efficient cell interaction-based 2×4 uncontrollable decoder. The proposed structures are extensively simulated and evaluated using specialized QCA design tools. Simulation results show that the proposed structures have outperformed their recently reported counterparts and have achieved significant improvements in key design parameters including cell count, area, and energy dissipation. For instance, the proposed multi-layer 2×4 and 3×8 decoders have achieved up to 34% and 30% enhancements in cell count, 33% and 33% reductions in area requirements besides 44% and 27% improvements in energy dissipation, respectively as compared to their best existing counterparts. Hence, the proposed QCA-based decoders can serve as compact and energy-efficient building blocks for larger digital systems.
Copyright © 2022 Praise Worthy Prize - All rights reserved.

Keywords


QCA; Nano Technology; Decoder; Energy-Efficient Structures

Full Text:

PDF


References


T. N. Sasamal, A. K. Singh, and A. Mohan, "Quantum-Dot Cellular Automata Based Digital Logic Circuits: A Design Perspective," in Studies in Computational Intelligence, ed: Springer Singapore, 2020.
https://doi.org/10.1007/978-981-15-1823-2

B. Safaiezadeh, E. Mahdipour, M. Haghparast, S. Sayedsalehi, and M. Hosseinzadeh, Novel design and simulation of reversible ALU in quantum dot cellular automata, The Journal of Supercomputing, vol. 78, no. 1, pp. 868-882, 2022.
https://doi.org/10.1007/s11227-021-03860-y

A. Abbasizadeh, M. Mosleh, and S.-S. Ahmadpour, An optimized arithmetic logic unit in quantum-dot cellular automata (QCA) technology, Optik, vol. 262, p. 169258, 2022.
https://doi.org/10.1016/j.ijleo.2022.169258

M. Gao, J. Wang, S. Fang, J. Nan, and L. Daming, A New Nano Design for Implementation of a Digital Comparator Based on Quantum-Dot Cellular Automata, International Journal of Theoretical Physics, vol. 60, no. 7, pp. 2358-2367, 2020.
https://doi.org/10.1007/s10773-020-04499-w

L. Dehbozorgi, R. Sabbaghi-Nadooshan, and A. Kashaninia, Realization of processing-in-memory using binary and ternary quantum-dot cellular automata, The Journal of Supercomputing, vol. 78, no. 5, pp. 6846-6874, 2022.
https://doi.org/10.1007/s11227-021-04152-1

S. Seyedi and N. J. Navimipour, An Optimized Three-Level Design of Decoder Based on Nanoscale Quantum-Dot Cellular Automata, International Journal of Theoretical Physics, vol. 57, no. 7, pp. 2022-2033, 2018.
https://doi.org/10.1007/s10773-018-3728-0

B. Debnath, J. C. Das, and D. De, Cryptographic models of nanocommunicaton network using quantum dot cellular automata: A survey, IET Quantum Communication, vol. 2, no. 3, pp. 98-121, 2021.
https://doi.org/10.1049/qtc2.12013

M. M. Fazili, M. F. Shah, S. F. Naz, and A. P. Shah, Survey, taxonomy, and methods of QCA-based design techniques-part II: reliability and security, Semiconductor Science and Technology, vol. 37, no. 6, p. 063002, 2022.
https://doi.org/10.1088/1361-6641/ac5ec1

A. Kundu, B. Debnath, J. Chandra Das, and D. De, Digital signature technique with quantum-dot cellular automata, IET Quantum Communication, pp. 1-10, 2022.
https://doi.org/10.1049/qtc2.12041

A. N. Bahar and K. A. Wahid, Design and Implementation of Approximate DCT Architecture in Quantum-Dot Cellular Automata, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 12, pp. 2530-2539, 2020.
https://doi.org/10.1109/TVLSI.2020.3013724

Z. Song, G. Xie, X. Cheng, L. Wang, and Y. Zhang, An Ultra-Low Cost Multilayer RAM in Quantum-Dot Cellular Automata, IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 12, pp. 3397-3401, 2020.
https://doi.org/10.1109/TCSII.2020.2988046

T. N. Sasamal, A. K. Singh, and A. Mohan, QCA Background, in Quantum-Dot Cellular Automata Based Digital Logic Circuits: A Design Perspective, ed: Springer Singapore, 2019, pp. 9-31.
https://doi.org/10.1007/978-981-15-1823-2_2

Y. Rahmani, S. R. Heikalabad, and M. Mosleh, Efficient structures for fault-tolerant majority gate in quantum-dot cellular automata, Optical and Quantum Electronics, vol. 53, no. 1, 2021.
https://doi.org/10.1007/s11082-020-02691-0

M. M. Fazili, M. F. Shah, S. F. Naz, and A. P. Shah, Survey, taxonomy, and methods of QCA-based design techniques-part I: digital circuits, Semiconductor Science and Technology, vol. 37, no. 6, p. 063001, 2022.
https://doi.org/10.1088/1361-6641/ac5ec0

T. N. Sasamal, A. K. Singh, and A. Mohan, Clocking Schemes for QCA, in Quantum-Dot Cellular Automata Based Digital Logic Circuits: A Design Perspective, ed: Springer Singapore, 2019, pp. 139-145.
https://doi.org/10.1007/978-981-15-1823-2_9

F. Salimzadeh and S. R. Heikalabad, A full adder structure with a unique XNOR gate based on Coulomb interaction in QCA nanotechnology, Optical and Quantum Electronics, vol. 53, no. 8, 2021.
https://doi.org/10.1007/s11082-021-03127-z

Altarawneh, Z., Al-Tarawneh, M., Improved QCA-Based Full Adder/Subtractor Structures, (2021) International Review of Electrical Engineering (IREE), 16 (4), pp. 391-400.
https://doi.org/10.15866/iree.v16i4.20525

K. Raja Sekar, R. Marshal, and G. Lakshminarayanan, High-Speed Serial-Parallel Multiplier in Quantum-Dot Cellular Automata, IEEE Embedded Systems Letters, vol. 14, no. 1, pp. 31-34, 2022.
https://doi.org/10.1109/LES.2021.3098017

I. Gassoumi, L. Touil, and A. Mtibaa, Design of efficient binary-coded decimal adder in QCA technology with a regular clocking scheme, Computers and Electrical Engineering, vol. 101, p. 107999, 2022.
https://doi.org/10.1016/j.compeleceng.2022.107999

S. Yaqoob, S. Ahmed, S. F. Naz, S. Bashir, and S. Sharma, Design of efficient N-bit shift register using optimized D flip flop in quantum dot cellular automata technology, IET Quantum Communication, vol. 2, no. 2, pp. 32-41, 2021.
https://doi.org/10.1049/qtc2.12008

S. R. Heikalabad, Non-coplanar counter in quantum-dot cellular automata, The European Physical Journal Plus, vol. 136, no. 2, pp. 1-16, 2021.
https://doi.org/10.1140/epjp/s13360-021-01198-1

M. Tarawneh and Z. Altarawneh, C-Element Design in Quantum Dot Cellular Automata, Jordanian Journal of Computers and Information Technology, vol. 7, no. 1, pp. 51-63, 2020.
https://doi.org/10.5455/jjcit.71-1598791557

M. Enayati, A. Rezai, and A. Karimi, Efficient circuit design for content-addressable memory in quantum-dot cellular automata technology, SN Applied Sciences, vol. 3, no. 10, p. 804, 2021.
https://doi.org/10.1007/s42452-021-04788-x

X. Wei and G. Min, A New Nano-Design of a Fault-Tolerant Coplanar RAM with Set/Reset Ability Based on Quantum-Dots, ECS Journal of Solid State Science and Technology, vol. 11, no. 4, p. 041002, 2022.
https://doi.org/10.1149/2162-8777/ac611c

Altarawneh, Z., Al-Tarawneh, M., Design and Analysis of QCA-Based Physical Unclonable Functions for Hardware Security, (2021) International Journal on Engineering Applications (IREA), 9 (5), pp. 295-302.
https://doi.org/10.15866/irea.v9i5.20685

M. H. Valavi and G. Jaberipur, Physically unclonable functions based on small delay defects in QCA, Semiconductor Science and Technology, vol. 35, no. 3, p. 035024, 2020.
https://doi.org/10.1088/1361-6641/ab6bae

J. R. Monfared and A. Mousavi, Design and simulation of nano-arbiters using quantum-dot cellular automata, Microprocessors and Microsystems, vol. 72, p. 102926, 2020.
https://doi.org/10.1016/j.micpro.2019.102926

Z. Altarawneh and M. Tarawneh, Arbiter Design Based On Quantum Dot Cellular Automata, Jordanian Journal of Computers and Information Technology, vol. 7, no. 2, pp. 104-117, 2021.
https://doi.org/10.5455/jjcit.71-1599718940

R. Sherizadeh and N. J. Navimipour, Designing a 2-to-4 decoder on nanoscale based on quantum-dot cellular automata for energy dissipation improving, Optik, vol. 158, pp. 477-489, 2018.
https://doi.org/10.1016/j.ijleo.2017.12.055

M. Kianpour and R. Sabbaghi-Nadooshan, A conventional design and simulation for CLB implementation of an FPGA quantum-dot cellular automata, Microprocessors and Microsystems, vol. 38, no. 8, pp. 1046-1062, 2014.
https://doi.org/10.1016/j.micpro.2014.08.001

S.-S. Ahmadpour, M. Mosleh, and S. Rasouli Heikalabad, Efficient designs of quantum-dot cellular automata multiplexer and RAM with physical proof along with power analysis, The Journal of Supercomputing, vol. 78, no. 2, pp. 1672-1695, 2022.
https://doi.org/10.1007/s11227-021-03913-2

J. C. Jeon, Extendable Quantum-Dot Cellular Automata Decoding Architecture Using 5-Input Majority Gate, International Journal of Control and Automation, vol. 8, no. 12, pp. 107-118, 2015.
https://doi.org/10.14257/ijca.2015.8.12.10

M. Kumar and T. N. Sasamal, An Optimal design of 2-to-4 Decoder circuit in coplanar Quantum-dot cellular automata, Energy Procedia, vol. 117, pp. 450-457, 2017.
https://doi.org/10.1016/j.egypro.2017.05.170

T. Lantz and E. Peskin, A QCA Implementation of a Configurable Logic Block for an FPGA, 2006 IEEE International Conference on Reconfigurable Computing and FPGA's (ReConFig 2006), pp. 1-10, 2006.
https://doi.org/10.1109/RECONF.2006.307763

M. Kianpour and R. Sabbaghi-Nadooshan, A Novel Modular Decoder Implementation in Quantum-Dot Cellular Automata (QCA), 2011 International Conference on Nanoscience, Technology and Societal Implications, pp. 1-5, 2011.
https://doi.org/10.1109/NSTSI.2011.6111999

D. De, T. Purkayastha, and T. Chattopadhyay, Design of QCA based Programmable Logic Array using decoder, Microelectronics Journal, vol. 55, pp. 92-107, 2016.
https://doi.org/10.1016/j.mejo.2016.06.005

A. Abbasizadeh and M. Mosleh, Ultradense 2-to-4 decoder in quantum-dot cellular automata technology based on MV32 gate, ETRI Journal, vol. 42, no. 6, pp. 912-921, 2020.
https://doi.org/10.4218/etrij.2019-0068

S.-S. Ahmadpour, M. Mosleh, and M.-A. Asadi, The Development of an Efficient 2-to-4 Decoder in Quantum-Dot Cellular Automata, Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol. 45, no. 2, pp. 391-405, 2020.
https://doi.org/10.1007/s40998-020-00375-9

K. Walus, T. J. Dysart, G. A. Jullien, and R. A. Budiman, QCADesigner: A Rapid Design and Simulation Tool for Quantum-Dot Cellular Automata, IEEE Transactions On Nanotechnology, vol. 3, no. 1, pp. 26-31, 2004.
https://doi.org/10.1109/TNANO.2003.820815

F. Sill Torres, R. Wille, P. Niemann, and R. Drechsler, An Energy-Aware Model for the Logic Synthesis of Quantum-Dot Cellular Automata, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 12, pp. 3031-3041, 2018.
https://doi.org/10.1109/TCAD.2018.2789782


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize