Open Access Open Access  Restricted Access Subscription or Fee Access

Hybrid Micro-Grid: a Review on Operational Stability Aspects


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v17i5.21348

Abstract


With the significantly rising demand for alternate energy resources like renewable sources, the power demands are fulfilled at reduced expenses, and increased efficiency. Despite these alternate generation techniques, there are still considerable challenges in controlling and working Microgrids (MG’s) configured in DC and AC. Hybrid Micro-Grids (HMGs) are developed particularly for overcoming the effective power regulation difficulties encountered in standalone MGs by combining the advantages of individual AC and DC configurations. Since microgrids are equipped with power electronic interfaces, unlike the conventional system, maintaining voltage stability, frequency stability, and optimal power management is challenging and requires a different approach. This paper attempts to analyze various stability issues in existing systems and the control methods employed in prior works for a better understanding and management of HMG systems. It also presents a comparative study of related works in terms of their control techniques and achieved performance. The paper further discusses various research challenges prevailing in this field thereby providing an insight into the development of better control methods and techniques for resolving various stability issues in HMG for better management and supporting future applications.
Copyright © 2022 Praise Worthy Prize - All rights reserved.

Keywords


Microgrids; Hybrid Micro-Grids; Control Strategies; Stability; Renewable Energy Sources; Distributed Generation; Bidirectional Converter; Islanding Mode and Grid-Connected Mode; Power Management

Full Text:

PDF


References


Ktiraei, F., Iravani, R., Hatziargyriou, N., & Dimeas, A. (2008). Microgrids management controls and operation aspects of microgrids. IEEE Power Energy, 6(3), 54-65.
https://doi.org/10.1109/MPE.2008.918702

Bharath, K. R., Mithun M. Krishnan, and P. Kanakasabapathy. A review on dc microgrid control techniques applications and trends. International Journal of Renewable Energy Research (IJRER) 9.3 (2019): 1328-1338.

Nair R. P., & Kanakasabapathy, P. (2017, December). Control of a DC microgrid under dynamic load conditions. In 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy) (pp. 1-6). IEEE, 3, 890-925.
https://doi.org/10.1109/TAPENERGY.2017.8397212

Song, Y., Hill, D. J., & Liu, T. (2019). Impact of DG connection topology on the stability of inverter-based microgrids. IEEE Transactions on Power Systems, 34(5), 3970-3972.
https://doi.org/10.1109/TPWRS.2019.2917624

Sreelekshmi, R. S., Amitha Prasad, and Manjula G. Nair. Control and operation of microgrid connected Hybrid Energy Storage System. 2016 International Conference on Energy Efficient Technologies for Sustainability (ICEETS). IEEE, 2016
https://doi.org/10.1109/ICEETS.2016.7583780

Katiraei, F., & Iravani, M. R. (2006). Power management strategies for a microgrid with multiple distributed generation units. IEEE Transactions on Power Systems, 21(4), 1821-1831.
https://doi.org/10.1109/TPWRS.2006.879260

Sao, C. K., & Lehn, P. W. (2008). Control and power management of converter-fed microgrids. IEEE Transactions on Power Systems, 23(3), 1088-1098.
https://doi.org/10.1109/TPWRS.2008.922232

Chung, I. Y., Liu, W., Cartes, D. A., Collins, E. G., & Moon, S. I. (2010). Control methods of inverter-interfaced distributed generators in a microgrid system. IEEE Transactions on Industry Applications, 46(3), 1078-1088.
https://doi.org/10.1109/TIA.2010.2044970

Jain, T. (2013, October). Hybrid AC/DC micro grid: An overview. In Fifth International Conference on Power and Energy Systems.

Saury, F. X., & Tomlinson, C. (2016). Hybrid microgrids: The time is now. Caterpillar Inc, 1(2), 1-12.

Wang, P., Liu, X., Jin, C., Loh, P., & Choo, F. (2011, July). A hybrid AC/DC micro-grid architecture, operation and control. In 2011 IEEE Power and Energy Society General Meeting (pp. 1-8). IEEE.
https://doi.org/10.1109/PES.2011.6039453

Wang, P., Xiao, J., Jin, C., Han, X., & Qin, W. (2017). Hybrid ac/dc micro-grids: Solution for high efficient future power systems. In Sustainable Power Systems (pp. 23-40). Springer, Singapore.
https://doi.org/10.1007/978-981-10-2230-2_2

Amin, M. (2016). Hybrid microgrid and its coordination (Doctoral dissertation, California State University, Northridge).

Anoop, S., et al. Implementation of a load side management algorithm for an islanded microgrid powered by renewable energy sources. 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy). IEEE, 2017..
https://doi.org/10.1109/TAPENERGY.2017.8397353

Ajaei, F. B., Mohammadi, J., Stevens, G., & Akhavan, E. (2019, May). Hybrid AC/DC Microgrid Configurations for a Net-Zero Energy Community. In 2019 IEEE/IAS 55th Industrial and Commercial Power Systems Technical Conference (I&CPS) (pp. 1-7). IEEE.
https://doi.org/10.1109/ICPS.2019.8733323

VC, Jishnu Sankar, Minnu Raghunath, and Manjula G. Nair. Optimal scheduling and energy management of a residential hybrid microgrid. 2017 Innovations in Power and Advanced Computing Technologies (i-PACT). IEEE, 2017.

Hamad, A. A., Nassar, M. E., El-Saadany, E. F., & Salama, M. M. A. (2018). Optimal configuration of isolated hybrid AC/DC microgrids. IEEE Transactions on Smart Grid, 10(3), 2789-2798.
https://doi.org/10.1109/TSG.2018.2810310

Unamuno, E., & Barrena, J. A. (2015). Hybrid ac/dc microgrids-Part I: Review and classification of topologies. Renewable and Sustainable Energy Reviews, 52, 1251-1259.
https://doi.org/10.1016/j.rser.2015.07.194

Saritha, Subramanya sarma, S. Jayalakshmi. (2016). Hybrid Microgrid Architectures and Challenges. International Journal for Modern Trends in Science and Technology.

Dimeas, A., Katiraei, F., Iravani, R., & Hatziargyriou, N. (2008). Microgrids Management Controls and Operation Aspects of Microgrids. IEEE Power & Energy Magazine, 54-65.
https://doi.org/10.1109/MPE.2008.918702

Eghtedarpour, N., & Farjah, E. (2012). Control strategy for distributed integration of photovoltaic and energy storage systems in DC micro-grids. Renewable Energy, 45, 96-110.
https://doi.org/10.1016/j.renene.2012.02.017

Kottayil, Sasi K. Energy-aware intelligent controller for dynamic energy management on smart microgrid. 2014 Power and Energy Systems: towards sustainable energy. IEEE, 2014.

Saavedra, A., Galvis, N., Mesa, F., Banguero, E., Castaneda, M., Zapata, S., Aristizabal, A., Current State of the Worldwide Renewable Energy Generation: a Review, (2021) International Journal on Engineering Applications (IREA), 9 (3), pp. 115-127.
https://doi.org/10.15866/irea.v9i3.19987

Bollen, M. H., Das, R., Djokic, S., Ciufo, P., Meyer, J., Rönnberg, S. K., & Zavodam, F. (2016). Power quality concerns in implementing smart distribution-grid applications. IEEE Transactions on Smart Grid, 8(1), 391-399.
https://doi.org/10.1109/TSG.2016.2596788

Tavakoli, A., Negnevitsky, M., & Muttaqi, K. M. (2016). A decentralized model predictive control for operation of multiple distributed generators in an islanded mode. IEEE Transactions on Industry Applications, 53(2), 1466-1475.
https://doi.org/10.1109/TIA.2016.2616396

He, J., Li, Y. W., Bosnjak, D., & Harris, B. (2012). Investigation and active damping of multiple resonances in a parallel-inverter-based microgrid. IEEE Transactions on Power Electronics, 28(1), 234-246.
https://doi.org/10.1109/TPEL.2012.2195032

Farrokhabadi, M., Cañizares, C. A., Simpson-Porco, J. W., Nasr, E., Fan, L., Mendoza Araya, P. A., ... & Reilly, J. (2019). Microgrid stability definitions, analysis, and examples. IEEE Transactions on Power Systems, 35(1), 13-29.
https://doi.org/10.1109/TPWRS.2019.2925703

Tayab, U. B., Roslan, M. A. B., Hwai, L. J., & Kashif, M. (2017). A review of droop control techniques for microgrid. Renewable and Sustainable Energy Reviews, 76, 717-727.
https://doi.org/10.1016/j.rser.2017.03.028

Li, Y., & Li, Y. W. (2011). Power management of inverter interfaced autonomous microgrid based on virtual frequency-voltage frame. IEEE Transactions on Smart Grid, 2(1), 30-40.
https://doi.org/10.1109/TSG.2010.2095046

Kharrich, M., Mohammed, O., Suliman, M., Akherraz, M., A Review on Recent Sizing Methodologies for Hybrid Microgrid Systems, (2019) International Journal on Energy Conversion (IRECON), 7 (6), pp. 230-240.
https://doi.org/10.15866/irecon.v7i6.17813

Barklund, E., Pogaku, N., Prodanovic, M., Hernandez-Aramburo, C., & Green, T. C. (2008). Energy management in autonomous microgrid using stability-constrained droop control of inverters. IEEE Transactions on Power Electronics, 23(5), 2346-2352.
https://doi.org/10.1109/TPEL.2008.2001910

Mohamed, Y. A. R. I., & El-Saadany, E. F. (2008). Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids. IEEE Transactions on Power Electronics, 23(6), 2806-2816.
https://doi.org/10.1109/TPEL.2008.2005100

Wang, X., Blaabjerg, F., & Wu, W. (2014). Modeling and analysis of harmonic stability in an AC power-electronics-based power system. IEEE Transactions on Power Electronics, 29(12), 6421-6432.
https://doi.org/10.1109/TPEL.2014.2306432

Wang, X., Blaabjerg, F., & Chen, Z. (2013). Autonomous control of inverter-interfaced distributed generation units for harmonic current filtering and resonance damping in an islanded microgrid. IEEE Transactions on Industry Applications, 50(1), 452-461.
https://doi.org/10.1109/TIA.2013.2268734

He, J., Li, Y. W., Bosnjak, D., & Harris, B. (2012). Investigation and active damping of multiple resonances in a parallel-inverter-based microgrid. IEEE Transactions on Power Electronics, 28(1), 234-246.
https://doi.org/10.1109/TPEL.2012.2195032

M. N. Hussain, G. Melath and V. Agarwal, An Active Damping Technique for PI and Predictive Controllers of an Interlinking Converter in an Islanded Hybrid Microgrid, in IEEE Transactions on Power Electronics, vol. 36, no. 5, pp. 5521-5529, May 2021.
https://doi.org/10.1109/TPEL.2020.3030875

Delille, G., Francois, B., & Malarange, G. (2012). Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system's inertia. IEEE Transactions on sustainable energy, 3(4), 931-939.
https://doi.org/10.1109/TSTE.2012.2205025

Pogaku, N., Prodanovic, M., & Green, T. C. (2007). Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Transactions on power electronics, 22(2), 613-625.
https://doi.org/10.1109/TPEL.2006.890003

Farrokhabadi, M., König, S., Cañizares, C. A., Bhattacharya, K., & Leibfried, T. (2017). Battery energy storage system models for microgrid stability analysis and dynamic simulation. IEEE Transactions on Power Systems, 33(2), 2301-2312.
https://doi.org/10.1109/TPWRS.2017.2740163

Aderibole, A., Zeineldin, H. H., El-Moursi, M. S., Peng, J. C. H., & Al Hosani, M. (2017). Domain of stability characterization for hybrid microgrids considering different power sharing conditions. IEEE Transactions on Energy Conversion, 33(1), 312-323.
https://doi.org/10.1109/TEC.2017.2743105

Eajal, A. A., Yazdavar, A. H., El-Saadany, E. F., & Ponnambalam, K. (2019). On the Loadability and Voltage Stability of Islanded AC-DC Hybrid Microgrids during Contingencies. IEEE Systems Journal, 13(4), 4248-4259.
https://doi.org/10.1109/JSYST.2019.2910734

Guerrero, J. M., Vasquez, J. C., Matas, J., De Vicuña, L. G., & Castilla, M. (2010) Hierarchical control of droop-controlled AC and DC microgrids-A general approach toward standardization. IEEE Transactions on Industrial Electronics, 58(1), 158-172.
https://doi.org/10.1109/TIE.2010.2066534

Unamuno, E., & Barrena, J. A. (2015). Hybrid ac/dc microgrids-Part II: Review and classification of control strategies. Renewable and Sustainable Energy Reviews, 52, 1123-1134.
https://doi.org/10.1016/j.rser.2015.07.186

Romphochai, S., A Novel Adaptive Virtual Inertia Control-Based Adaptive Neuro-Fuzzy to Enhance Frequency Stability of a Microgrid with Seamless Transition, (2021) International Review of Electrical Engineering (IREE), 16 (1), pp. 78-94.
https://doi.org/10.15866/iree.v16i1.18168

Prompinit, K., Khomfoi, S., A Battery Energy Storage System Control Technique with Ramp Rate and C-Rate Parameter Consideration for AC Microgrid Applications, (2018) International Review of Electrical Engineering (IREE), 13 (2), pp. 137-148.
https://doi.org/10.15866/iree.v13i2.14160

Dou, C., Zhang, Z., Yue, D., & Zheng, Y. (2017). MAS-based hierarchical distributed coordinate control strategy of virtual power source voltage in low-voltage microgrid. IEEE Access, 5, 11381-11390.
https://doi.org/10.1109/ACCESS.2017.2717493

Yang, Z., Li, Y., & Xiang, J. (2018). Coordination control strategy for power management of active distribution networks. IEEE Transactions on Smart Grid, 10(5), 5524-5535.
https://doi.org/10.1109/TSG.2018.2883987

Zhao, H., Wu, Q., Wang, C., Cheng, L., & Rasmussen, C. N. (2015). Fuzzy logic based coordinated control of battery energy storage system and dispatchable distributed generation for microgrid. Journal of Modern Power Systems and Clean Energy, 3(3), 422-428.
https://doi.org/10.1007/s40565-015-0119-x

Omar, M., Control Scheme of Photovoltaic Inverter for Voltage Improvement in Isolated AC Microgrids, (2020) International Review of Electrical Engineering (IREE), 15 (3), pp. 199-205.
https://doi.org/10.15866/iree.v15i3.18591

Jamaica-Obregón, J., Moreno-Chuquen, R., Flórez-Cediel, O., Optimal Operation of Grid-Connected Microgrids with Photovoltaic Generation and Storage, (2021) International Review of Electrical Engineering (IREE), 16 (1), pp. 50-59.
https://doi.org/10.15866/iree.v16i1.18561

Mendoza, D., Rosero Garcia, J., Multi-Objective Optimization of a Microgrid Considering MBESS Efficiencies, the Initial State of Charge, and Storage Capacity, (2022) International Review of Electrical Engineering (IREE), 17 (3), pp. 273-285.
https://doi.org/10.15866/iree.v17i3.22053

Aryani, D. R., & Song, H. (2016). Coordination control strategy for AC/DC hybrid microgrids in stand-alone mode. Energies, 9(6), 469.
https://doi.org/10.3390/en9060469

Hu, J., Shan, Y., Xu, Y., & Guerrero, J. M. (2019). Coordinated control of hybrid ac/dc microgrids with PV-wind battery under variable generation and load conditions. International Journal of Electrical Power & Energy Systems, 104, 583-592.
https://doi.org/10.1016/j.ijepes.2018.07.037

Loh, P. C., Li, D., Chai, Y. K., & Blaabjerg, F. (2013). Autonomous control of interlinking converter with energy storage in hybrid AC-DC microgrid. IEEE Transactions on Industry Applications, 49(3), 1374-1382.
https://doi.org/10.1109/TIA.2013.2252319

Rocabert, J., Luna, A., Blaabjerg, F., & Rodriguez, P. (2012). Control of power converters in AC microgrids. IEEE Transactions on Power Electronics, 27(11), 4734-4749.
https://doi.org/10.1109/TPEL.2012.2199334

Taher, A., Taha, A., Hasanien, H., Ginidi, A., Decentralized Control Based on Hybrid Water Cycle and Moth-Flame Optimization of Fractional-Order Fuzzy PID in a Multiple DGs Faulty Autonomous Microgrid, (2021) International Journal on Energy Conversion (IRECON), 9 (5), pp. 239-250.
https://doi.org/10.15866/irecon.v9i5.20291

Khongkhachat, S., Khomfoi, S., A Sliding Mode Control Strategy for a Grid-Supporting and Grid-Forming Power Converter in Autonomous AC Microgrids, (2019) International Review of Electrical Engineering (IREE), 14 (2), pp. 118-132.
https://doi.org/10.15866/iree.v14i2.16331

Vandoorn, T. L., Renders, B., Degroote, L., Meersman, B., & Vandevelde, L. (2010). Active load control in islanded microgrids based on the grid voltage. IEEE Transactions on Smart Grid, 2(1), 139-151.
https://doi.org/10.1109/TSG.2010.2090911

Kahrobaeian, A., & Mohamed, Y. A. R. I. (2013). Analysis and mitigation of low-frequency instabilities in autonomous medium-voltage converter-based microgrids with dynamic loads. IEEE Transactions on Industrial Electronics, 61(4), 1643-1658.
https://doi.org/10.1109/TIE.2013.2264790

Ma, T., Cintuglu, M. H., & Mohammed, O. A. (2016). Control of a hybrid AC/DC microgrid involving energy storage and pulsed loads. IEEE Transactions on Industry Applications, 53(1), 567-575.
https://doi.org/10.1109/TIA.2016.2613981

Shahnia, F., Majumder, R., Ghosh, A., Ledwich, G., & Zare, F. (2010). Operation and control of a hybrid microgrid containing unbalanced and nonlinear loads. Electric Power Systems Research, 80(8), 954-965.
https://doi.org/10.1016/j.epsr.2010.01.005

Essam Harby, M., Elzoghby, H., Elmasry, S., Elsamahy, A., Microgrid Frequency Stability Enhancement Through Controlling Electric Vehicles Batteries Based on Fuzzy Logic Controller, (2020) International Review of Automatic Control (IREACO), 13 (5), pp. 214-223.
https://doi.org/10.15866/ireaco.v13i5.19379

Boudiaf, B., Zebirate, S., Aissani, N., Chaker, A., Isolated Microgrid Management Using a Multi-Agent System, (2021) International Review on Modelling and Simulations (IREMOS), 14 (1), pp. 1-9.
https://doi.org/10.15866/iremos.v14i1.18940

Eghtedarpour, N., & Farjah, E. (2014). Power control and management in a hybrid AC/DC microgrid. IEEE Transactions on Smart Grid, 5(3), 1494-1505.
https://doi.org/10.1109/TSG.2013.2294275

Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B., & Talebi, H. A. (2017, December). Performance analysis of an improved hierarchical droop-based control scheme under topological, parametric and communication uncertainties: Towards a resilient microgrid. In 2017 Smart Grid Conference (SGC) (pp. 1-6). IEEE.
https://doi.org/10.1109/SGC.2017.8308883

Zhong, Q. C. (2011). Robust droop controller for accurate proportional load sharing among inverters operated in parallel. IEEE Transactions on Industrial Electronics, 60(4), 1281-1290.
https://doi.org/10.1109/TIE.2011.2146221

Sun, X., Tian, Y., & Chen, Z. (2013). Adaptive decoupled power control method for inverter connected DG. IET Renewable Power Generation, 8(2), 171-182.
https://doi.org/10.1049/iet-rpg.2012.0328

Papadimitriou, C. N., Kleftakis, V. A., & Hatziargyriou, N. D. (2017). Control strategy for seamless transition from islanded to interconnected operation mode of microgrids. Journal of Modern Power Systems and Clean Energy, 5(2), 169-176.
https://doi.org/10.1007/s40565-016-0229-0

Hou, X., Sun, Y., Lu, J., Zhang, X., Koh, L. H., Su, M., & Guerrero, J. M. (2018). Distributed hierarchical control of AC microgrid operating in grid-connected, islanded and their transition modes. IEEE Access, 6, 77388-77401.
https://doi.org/10.1109/ACCESS.2018.2882678

Bandla, K. C., Gururaj, M. V., & Padhy, N. P. (2020, January). Decentralized and Coordinated Virtual Synchronous Generator control for Hybrid AC-DC Microgrids. In 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020) (pp. 1-6). IEEE.
https://doi.org/10.1109/PESGRE45664.2020.9070695

Xu, Y., Sun, H., Gu, W., Xu, Y., & Li, Z. (2018). Optimal distributed control for secondary frequency and voltage regulation in an islanded microgrid. IEEE Transactions on Industrial Informatics, 15(1), 225-235.
https://doi.org/10.1109/TII.2018.2795584

Asghar, F., Talha, M., & Kim, S. H. (2017). Robust frequency and voltage stability control strategy for standalone AC/DC hybrid microgrid. Energies, 10(6), 760.
https://doi.org/10.3390/en10060760

Nair, Rekha P., and P. Kanakasabapathy. Satin Bower Bird Algorithm for Controller Parameter Optimization in an Autonomous AC Microgrid. Advances in Smart Grid Technology. Springer, Singapore, 2020. 21-30.
https://doi.org/10.1007/978-981-15-7245-6_3


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize