Open Access Open Access  Restricted Access Subscription or Fee Access

Resilience Assessment in a Low Voltage Power Grid with Photovoltaic Generation in a University Building


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v16i4.20327

Abstract


High integration of photovoltaic (PV) systems into the power systems causes negative or positive impacts. Typically, research considers the PV impacts on the RMS voltage, power losses, transformers and feeder stress, and power quality indicators. However, a generalising assessment of the electrical parameters and indicators (P&I) describes the power grid performance. It considers a complete holistic view of the real impacts that many events cause over the power grid operation. Therefore, this research proposes the resilience index in order to quantify and assess the impacts that the PV systems cause in low voltage. This scheme has four stages: i) P&I measurement, ii) P&I normalisation, iii) P&I weights assignment, and iv) resilience index quantification and assessment. The resilience scheme assessment has been applied in a low voltage university building with a PV system interconnected of 11.53 kWp. Monitoring has lasted for a month, with data acquisition every ten minutes. P&I monitored have been RMS voltage, RMS current, active, and non-active power, voltage imbalance, total harmonic distortion of voltage and current, and harmonic components of voltage and current. Results indicate that the PV system has positively affected the resilience index in the point of common coupling and floor four-node because the THDv, Vh, THDi, and Ih improved.
Copyright © 2021 Praise Worthy Prize - All rights reserved.

Keywords


Resilience; Photovoltaic Systems; Parameters; Indicators

Full Text:

PDF


References


North American Electric Reliability Corporation, Distributed Energy Resources: Connection Modeling and Reliability Considerations, 2017.

M. Mokhtari, G. B. Gharehpetian, and S. M. Mousavi Agah, Distributed Energy Resources, in Distributed Generation Systems, Elsevier, 2017, pp. 1-19.
https://doi.org/10.1016/B978-0-12-804208-3.00001-7

E. S. N. Raju P and T. Jain, Distributed energy resources and control, in Distributed Energy Resources in Microgrids, Elsevier, 2019, pp. 33-56.
https://doi.org/10.1016/B978-0-12-817774-7.00002-8

A. Sheer, A. Tahrawi, J. Al Jeesh, and Y. Ibrahim, Introduction. London: Elsevier Inc., 2016.

K. Ramalingam and C. Indulkar, Solar Energy and Photovoltaic Technology, in Distributed Generation Systems, Elsevier, 2017, pp. 69-147.
https://doi.org/10.1016/B978-0-12-804208-3.00003-0

I. Dincer and A. Abu-Rayash, Energy sources, in Energy Sustainability, Elsevier, 2020, pp. 19-58.
https://doi.org/10.1016/B978-0-12-819556-7.00002-4

International Renewable Energy Agency (IRENA), Future Of Solar Photovoltaic Deployment, investment, technology, grid integration and socio-economic aspects. IRENA, 2019.

International Energy Agency, World Energy Outlook 2019. IEA, 2019.

REN21, Renewables in Cities - 2019 Global Status Report. París, 2019.

A. Jäger-Waldau, PV Status Report 2019, Luxemburgo, 2019.

International Renewable Energy Agency, Renewable Capacity Statistics 2020, Abu Dhabi, 2020.

M. Cunha Clark Leite, F. Alisson Martins Vieira, V. Bravo Silva, M. Zamboti Fortes, and D. Henrique Nogueira Dias, Harmonic Analysis of a Photovoltaic Systems Connected to Low Voltage Grid, IEEE Lat. Am. Trans., vol. 16, no. 1, pp. 112-117, 2018.
https://doi.org/10.1109/TLA.2018.8291462

M. Karimi, H. Mokhlis, K. Naidu, S. Uddin, and A. H. A. Bakar, Photovoltaic penetration issues and impacts in distribution network-A review, Renew. Sustain. Energy Rev., vol. 53, pp. 594-605, 2016.
https://doi.org/10.1016/j.rser.2015.08.042

International Energy Agency, World Energy Outlook, p. 17, 2017.

J. C. Boemer, On Stability of Sustainable Power Systems: Network Fault Response of Transmission Systems with Very High Penetration of Distributed Generation. Jens Christian Boemer, 2016.

S. Maharjan, D. Sampath Kumar, and A. M. Khambadkone, Enhancing the voltage stability of distribution network during PV ramping conditions with variable speed drive loads, Appl. Energy, vol. 264, no. February, p. 114733, Apr. 2020.
https://doi.org/10.1016/j.apenergy.2020.114733

A. Borghetti and C. A. Nucci, Integration of distributed energy resources in distribution power systems, in Integration of Distributed Energy Resources in Power Systems, no. Mv, Elsevier, 2016, pp. 15-50.
https://doi.org/10.1016/B978-0-12-803212-1.00002-7

F. M. Camilo, V. F. Pires, R. Castro, and M. E. Almeida, The impact of harmonics compensation ancillary services of photovoltaic microgeneration in low voltage distribution networks, Sustain. Cities Soc., vol. 39, no. November 2017, pp. 449-458, May 2018.
https://doi.org/10.1016/j.scs.2018.03.016

C. N. Acosta and M. Madrigal, Interaction between photovoltaic power systems and distribution power systems: Impact on the power factor and energy losses, 2017 IEEE Int. Autumn Meet. Power, Electron. Comput. ROPEC 2017, vol. 2018-Janua, no. Ropec, pp. 1-6, 2018.

C. Bustos, D. Watts, and D. Olivares, The evolution over time of Distributed Energy Resource's penetration: A robust framework to assess the future impact of prosumage under different tariff designs, Appl. Energy, vol. 256, no. September, p. 113903, Dec. 2019.
https://doi.org/10.1016/j.apenergy.2019.113903

M. Katsanevakis, R. A. Stewart, and L. Junwei, A novel voltage stability and quality index demonstrated on a low voltage distribution network with multifunctional energy storage systems, Electr. Power Syst. Res., 2019.
https://doi.org/10.1016/j.epsr.2019.01.043

A. Procopiou, K. Petrou, and L. Ochoa, Advanced Planning of PV-Rich Distribution Networks Deliverable 3: Traditional Solutions, The University of Melbourne, February, pp. 1-95, 2020.

CREG, UTP, and Centro de Energía, Study to design the followers indicators and the assessment of prosumers and distributed generation integration into the national power system interconnected,. Bogotá, 2019. URL:
http://zeus.creg.gov.co/Publicac.nsf/52188526a7290f8505256eee0072eba7/34c9b929784b6746052583b0007a99e7/$FILE/Circular021-2019 Anexo1.pdf

T. Senjyu and A. M. Howlader, Operational aspects of distribution systems with massive DER penetrations, in Integration of Distributed Energy Resources in Power Systems, vol. 2012, T. Funabashi, Ed. Elsevier, 2016, pp. 51-76.
https://doi.org/10.1016/B978-0-12-803212-1.00003-9

A. I. Nousdilis, G. C. Christoforidis, and G. K. Papagiannis, Active power management in low voltage networks with high photovoltaics penetration based on prosumers' self-consumption, Appl. Energy, vol. 229, pp. 614-624, Nov. 2018.
https://doi.org/10.1016/j.apenergy.2018.08.032

A. Alexander S, Development of solar photovoltaic inverter with reduced harmonic distortions suitable for Indian sub-continent, Renew. Sustain. Energy Rev., vol. 56, pp. 694-704, Apr. 2016.
https://doi.org/10.1016/j.rser.2015.11.092

N. Aphrodis, E. Ntagwirumugara, B. J. Marie Vianney, and F. Mulolani, Design, Control and Validation of a PV System Based on Supervisory Control and Data Acquisition (SCADA) Viewer in Smartgrids, in 2019 5th International Conference on Control, Automation and Robotics (ICCAR), 2019, pp. 23-28.
https://doi.org/10.1109/ICCAR.2019.8813711

F. Blaabjerg, Y. Yang, D. Yang, and X. Wang, Distributed Power-Generation Systems and Protection, Proc. IEEE, vol. 105, no. 7, pp. 1311-1331, Jul. 2017.
https://doi.org/10.1109/JPROC.2017.2696878

P. Westacott and C. Candelise, Assessing the impacts of photovoltaic penetration across an entire low-voltage distribution network containing 1.5 million customers, IET Renew. Power Gener., vol. 10, no. 4, pp. 460-466, Apr. 2016.
https://doi.org/10.1049/iet-rpg.2015.0535

D. F. Berquo, G. R. De Souza, and B. W. Franca, Impact of photovoltaic generation system on the energy quality of distribution systems, in SBSE 2018 - 7th Brazilian Electrical Systems Symposium, 2018, pp. 1-6.
https://doi.org/10.1109/SBSE.2018.8395873

B. Bayer, P. Matschoss, H. Thomas, and A. Marian, The German experience with integrating photovoltaic systems into the low-voltage grids, Renew. Energy, 2018.
https://doi.org/10.1016/j.renene.2017.11.045

Y. Astriani, K. Fauziah, H. Hilal, and B. Prasetyo, Load sharing control between PV power plant and diesel generator to mitigate effect of PV fluctuation using PID algorithm, Int. Conf. High Volt. Eng. Power Syst. ICHVEPS 2017 - Proceeding, vol. 2017-Janua, pp. 140-144, 2017.
https://doi.org/10.1109/ICHVEPS.2017.8225930

S. Bouchakour et al., Investigation of the voltage quality at PCC of grid connected PV system, Energy Procedia, vol. 141, pp. 66-70, Dec. 2017.
https://doi.org/10.1016/j.egypro.2017.11.013

A. Arshad and M. Lehtonen, A comprehensive voltage control strategy with voltage flicker compensation for highly PV penetrated distribution networks, Electr. Power Syst. Res., vol. 172, no. March, pp. 105-113, Jul. 2019.
https://doi.org/10.1016/j.epsr.2019.02.019

A. M. Howlader, S. Sadoyama, L. R. Roose, and Y. Chen, Active power control to mitigate voltage and frequency deviations for the smart grid using smart PV inverters, Appl. Energy, vol. 258, no. October 2019, p. 114000, Jan. 2020.
https://doi.org/10.1016/j.apenergy.2019.114000

C. Ma, J. Dasenbrock, J. C. Töbermann, and M. Braun, A novel indicator for evaluation of the impact of distributed generations on the energy losses of low voltage distribution grids, Appl. Energy, 2019.
https://doi.org/10.1016/j.apenergy.2019.03.090

M. Zeraati, M. E. Hamedani Golshan, and J. M. Guerrero, A Consensus-Based Cooperative Control of PEV Battery and PV Active Power Curtailment for Voltage Regulation in Distribution Networks, IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 670-680, 2019.
https://doi.org/10.1109/TSG.2017.2749623

A. Procopiou, K. Petrou, and L. Ochoa, Advanced Planning of PV-Rich Distribution Networks Deliverable 4: Non-Traditional Solutions, no. February, pp. 1-95, 2020.

A. Faza, A probabilistic model for estimating the effects of photovoltaic sources on the power systems reliability, Reliab. Eng. Syst. Saf., vol. 171, no. June 2017, pp. 67-77, 2018.
https://doi.org/10.1016/j.ress.2017.11.008

S. Gallardo-Saavedra and B. Karlsson, Simulation, validation and analysis of shading effects on a PV system, Sol. Energy, vol. 170, no. May, pp. 828-839, Aug. 2018.
https://doi.org/10.1016/j.solener.2018.06.035

N. Mishra, A. S. Yadav, R. Pachauri, Y. K. Chauhan, and V. K. Yadav, Performance enhancement of PV system using proposed array topologies under various shadow patterns, Sol. Energy, vol. 157, pp. 641-656, Nov. 2017.
https://doi.org/10.1016/j.solener.2017.08.021

Institute of Electrical and Electronics Engineers - IEEE, IEEE Guide for Conducting Distribution Impact Studies for Distributed Resource Interconnection. USA: IEEE, 2013, p. 137.

M. M. Haque and P. Wolfs, A review of high PV penetrations in LV distribution networks: Present status, impacts and mitigation measures, Renew. Sustain. Energy Rev., vol. 62, pp. 1195-1208, Sep. 2016.
https://doi.org/10.1016/j.rser.2016.04.025

G. A. Rampinelli, F. P. Gasparin, A. J. Bühler, A. Krenzinger, and F. Chenlo Romero, Assessment and mathematical modeling of energy quality parameters of grid connected photovoltaic inverters, Renew. Sustain. Energy Rev., vol. 52, pp. 133-141, Dec. 2015.
https://doi.org/10.1016/j.rser.2015.07.087

A. Johannes, M. Leach, and A. Yang, The impact of increased decentralised generation on the reliability of an existing electricity network, Appl. Energy, vol. 215, no. February, pp. 479-502, 2018.
https://doi.org/10.1016/j.apenergy.2018.02.009

F. Rezaei and S. Esmaeili, Decentralized reactive power control of distributed PV and wind power generation units using an optimized fuzzy-based method, Int. J. Electr. Power Energy Syst., vol. 87, pp. 27-42, 2017.
https://doi.org/10.1016/j.ijepes.2016.10.015

Y. Gabdullin and B. Azzopardi, Impacts of High Penetration of Photovoltaic Integration in Malta, in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), 2018, pp. 1398-1401.
https://doi.org/10.1109/PVSC.2018.8548256

A. Parrado-Duque, R. Rodriguez-Velasquez, G. Osma-Pinto, and G. Ordonez-Plata, Integration of Photovoltaic System in Low Voltage Electrical Network of the Electrical Engineering Building, in 2019 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), 2019, pp. 1-6.
https://doi.org/10.1109/PEPQA.2019.8851564

B. Plangklang, N. Thanomsat, and T. Phuksamak, A verification analysis of power quality and energy yield of a large scale PV rooftop, Energy Reports, vol. 2, pp. 1-7, Nov. 2016.
https://doi.org/10.1016/j.egyr.2015.12.002

G. Osma-Pinto, M. García-Rodríguez, J. Moreno-Vargas, and C. Duarte-Gualdrón, Impact Evaluation of Grid-Connected PV Systems on PQ Parameters by Comparative Analysis based on Inferential Statistics, Energies, vol. 13, no. 7, p. 1668, Apr. 2020.
https://doi.org/10.3390/en13071668

S. Tang, Y. Sun, Y. Chen, Y. Zhao, Y. Yang, and W. Szeto, An Enhanced MPPT Method Combining Fractional-Order and Fuzzy Logic Control, IEEE J. Photovoltaics, vol. 7, no. 2, pp. 640-650, Mar. 2017.
https://doi.org/10.1109/JPHOTOV.2017.2649600

M. A. Hannan, Z. A. Ghani, A. Mohamed, and M. N. Uddin, Real-Time Testing of a Fuzzy-Logic-Controller-Based Grid-Connected Photovoltaic Inverter System, IEEE Trans. Ind. Appl., vol. 51, no. 6, pp. 4775-4784, 2015.
https://doi.org/10.1109/TIA.2015.2455025

Institute of Electrical and Electronics Engineers - IEEE, IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces, no. February. New York: The Institute of Electrical and Electronics Engineers, Inc., 2018.

A. Elkholy, Harmonics assessment and mathematical modeling of power quality parameters for low voltage grid connected photovoltaic systems, Sol. Energy, vol. 183, no. March, pp. 315-326, May 2019.
https://doi.org/10.1016/j.solener.2019.03.009

N. S. Shari, M. H. Hairi, and M. N. Kamarudin, PV generation and its impact on low voltage network, in 2016 IEEE International Conference on Power and Energy (PECon), 2016, pp. 348-343.
https://doi.org/10.1109/PECON.2016.7951584

S. A. Arefifar, F. Paz, S. Member, and M. Ordonez, Improving Solar Power PV Plants Using Multivariate Design Optimization, IEEE J. Emerg. Sel. Top. POWER Electron., vol. 5, no. 2, pp. 638-650, 2017.
https://doi.org/10.1109/JESTPE.2017.2670500

D. Santos-Martin and S. Lemon, Simplified Modeling of Low Voltage Distribution Networks for PV Voltage Impact Studies, IEEE Trans. Smart Grid, vol. 7, no. 4, pp. 1924-1931, Jul. 2016.
https://doi.org/10.1109/TSG.2015.2500620

Z. Li, M. Shahidehpour, F. Aminifar, A. Alabdulwahab, and Y. Al-Turki, Networked Microgrids for Enhancing the Power System Resilience, Proc. IEEE, vol. 105, no. 7, pp. 1289-1310, Jul. 2017.
https://doi.org/10.1109/JPROC.2017.2685558

M. Tavakoli, F. Shokridehaki, M. Funsho Akorede, M. Marzband, I. Vechiu, and E. Pouresmaeil, CVaR-based energy management scheme for optimal resilience and operational cost in commercial building microgrids, Int. J. Electr. Power Energy Syst., vol. 100, no. August 2017, pp. 1-9, 2018.
https://doi.org/10.1016/j.ijepes.2018.02.022

P. E. Roege, Z. A. Collier, J. Mancillas, J. A. Mcdonagh, and I. Linkov, Metrics for energy resilience, Energy Policy, vol. 72, pp. 249-256, 2014.
https://doi.org/10.1016/j.enpol.2014.04.012

M. M. Sellberg, P. Ryan, S. T. Borgström, A. V. Norström, and G. D. Peterson, From resilience thinking to Resilience Planning: Lessons from practice, J. Environ. Manage., vol. 217, pp. 906-918, 2018.
https://doi.org/10.1016/j.jenvman.2018.04.012

S. Moslehi and T. A. Reddy, Sustainability of integrated energy systems: A performance-based resilience assessment methodology, Appl. Energy, vol. 228, no. April, pp. 487-498, 2018.
https://doi.org/10.1016/j.apenergy.2018.06.075

M. Panteli and P. Mancarella, The Grid: Stronger, Bigger, Smarter?: Presenting a Conceptual Framework of Power System Resilience, IEEE Power Energy Mag., vol. 13, no. 3, pp. 58-66, May 2015.
https://doi.org/10.1109/MPE.2015.2397334

E. Ciapessoni, D. Cirio, A. Pitto, M. Panteli, M. Van Harte, and C. Mak, Defining Power System Resilience, Electra, vol. October, no. 306, pp. 32-34, 2019.

D. Swift, Lessons in resilience from the Australian National Electricity Market, Electra, no. February, pp. 22-25, 2020.

IEEE Power & Energy Society, Resilience Framework, Methods, and Metrics for the Electricity Sector, 2020.

M. Emmanuel and R. Rayudu, Evolution of dispatchable photovoltaic system integration with the electric power network for smart grid applications: A review, Renew. Sustain. Energy Rev., vol. 67, pp. 207-224, 2017.
https://doi.org/10.1016/j.rser.2016.09.010

N. T. Bazargani and S. M. . Bathaee, A General Framework for Resiliency Evaluation of Radial Distribution System Against Extreme Events, in Electrical Engineering (ICEE), Iranian Conference on, 2018, pp. 1179-1184.
https://doi.org/10.1109/ICEE.2018.8472496

J. Lundberg and B. J. Johansson, Systemic resilience model, Reliab. Eng. Syst. Saf., vol. 141, pp. 22-32, Sep. 2015.
https://doi.org/10.1016/j.ress.2015.03.013

A. Parrado-Duque, G. Osma-Pinto, R. Rodriguez-Velasquez, and G. Ordonez-Plata, Considerations for the Assessment Resilience in Low Voltage Electrical Network with Photovoltaic Systems - Part I, in 2019 FISE-IEEE/CIGRE Conference - Living the energy Transition (FISE/CIGRE), 2019, pp. 1-6.
https://doi.org/10.1109/FISECIGRE48012.2019.8984962

European Committee for Electrotechnical Standardization, Electromagnetic compatibility (EMC). Part 4-30: Testing and measurement techniques. Power quality measurement methods. 2015, p. 78.

European Committee for Electrotechnical Standardization, Photovoltaic system perfomance - Part 1: Monitoring. 2017, p. 68.

I. Jovanović, I. Miljanović, and T. Jovanović, Soft computing-based modeling of flotation processes - A review, Miner. Eng., vol. 84, pp. 34-63, Dec. 2015.
https://doi.org/10.1016/j.mineng.2015.09.020

S. Sumathi, L. Ashok Kumar, and P. Surekha, Solar PV and Wind Energy Conversion Systems. Cham: Springer International Publishing, 2015.
https://doi.org/10.1007/978-3-319-14941-7

F. Chekired, A. Mahrane, Z. Samara, M. Chikh, A. Guenounou, and A. Meflah, Fuzzy logic energy management for a photovoltaic solar home, Energy Procedia, vol. 134, pp. 723-730, 2017.
https://doi.org/10.1016/j.egypro.2017.09.566

Y. Wu and J. Zhou, Risk assessment of urban rooftop distributed PV in energy performance contracting (EPC) projects: An extended HFLTS-DEMATEL fuzzy synthetic evaluation analysis, Sustain. Cities Soc., vol. 47, no. March 2019, p. 101524, 2019.
https://doi.org/10.1016/j.scs.2019.101524

Comisión De Regulación De Energía Y Gas, Resolution No. 060 of 2019. Colombia, 2019. URL:
http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/ca640edbe4b7b5100525842d0053745d/$FILE/Creg060-2019.pdf

G. Büyüközkan, S. Güleryüz, and B. Karpak, A new combined IF-DEMATEL and IF-ANP approach for CRM partner evaluation, Int. J. Prod. Econ., vol. 191, no. May, pp. 194-206, Sep. 2017.
https://doi.org/10.1016/j.ijpe.2017.05.012

M. Krawczak and G. Szkatuła, On matching of intuitionistic fuzzy sets, Inf. Sci. (Ny)., vol. 517, pp. 254-274, May 2020.
https://doi.org/10.1016/j.ins.2019.11.050

J. C. R. Alcantud, A. Z. Khameneh, and A. Kilicman, Aggregation of infinite chains of intuitionistic fuzzy sets and their application to choices with temporal intuitionistic fuzzy information, Inf. Sci. (Ny)., vol. 514, pp. 106-117, Apr. 2020.
https://doi.org/10.1016/j.ins.2019.12.008

G. Osma-Pinto and G. Ordóñez-Plata, Dynamic thermal modelling for the prediction of the operating temperature of a PV panel with an integrated cooling system, Renew. Energy, vol. 152, pp. 1041-1054, 2020.
https://doi.org/10.1016/j.renene.2020.01.132

A. Parrado-Duque, G. Osma-Pinto, and G. Ordóñez-Plata, Sustainability applications integrated in a university building in a tropical zone with gripv system, in II International Congress on Biorefineries and Renewable Energies Supported in ICTs: BRESICT, 2020, pp. 126-129.

G. Osma-Pinto and G. Ordóñez-Plata, Measuring factors influencing performance of rooftop PV panels in warm tropical climates, Sol. Energy, 2019.
https://doi.org/10.1016/j.solener.2019.04.053

C. Cortés and Y. García, Study of the impact of the energy injection of a photovoltaic generator on the voltage profile and energy losses in conductors of the low voltage network of the electrical engineering building from computer simulations, Universidad Industrial de Santander, 2018. URL:
http://tangara.uis.edu.co/biblioweb/pags/cat/popup/pa_detalle_matbib.jsp?parametros=184659%7C %7C1%7C1

A. Parrado-Duque, G. Osma-Pinto, and G. Ordóñez-Plata, Installation of a photovoltaic system in the electrical engineering building of the universidad industrial de santander, Rev. Colomb. Tecnol. Av., vol. 1, no. 33, pp. 150-154, 2019.
https://doi.org/10.24054/16927257.v33.n33.2019.3334


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize