Open Access Open Access  Restricted Access Subscription or Fee Access

Comparative Study of Thin-Film Perovskite Solar Cells Based on Methylammonium Lead Iodide and Methylammonium Lead Bromide


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v16i6.20189

Abstract


Less efficient solar cells are a hindrance in the commercialization of thin-film solar cells (TFSCs). Perovskite materials have now been extensively studied as an innovative epoch candidate. They are considered a panacea in the field of photovoltaics, as they levitate the Power Conversion Efficiency (PCE) of the device with proper encapsulation of the materials. In this paper, the proffer structures are deliberately devised and reckon for optimizing the thickness of prototypical materials such as Methylammonium lead iodide (CH3NH3PbI3) and Methylammonium lead bromide (CH3NH3PbBr3) perovskite, as there is a dire need to extract high conversion efficiency with minimum losses. Moreover, to improve the extraction of electrons and suppress the recombination losses, three Electron Transport Layers (ETLs) were introduced, which help in maintaining the open-circuit voltage (Voc). In addition, this study signifies that the lead iodide-based perovskite structure was found to more efficient as compared to lead bromide. The numerically extracted results after optimizing the structure under Standard Testing Conditions (STC) delivered the highest η of 24.89% with short-circuit current density, Jsc=24.04 mA/cm2, open-circuit voltage, VOC =1.31 V and Fill factor, FF=86.76% with an optimum thickness of 580 nm. Moreover, this fact-finding study also throws light on the temperature of the device and discovered result markedly shows that high temperature deteriorates the η of the cell.
Copyright © 2021 Praise Worthy Prize - All rights reserved.

Keywords


Thin-Film; Perovskite; Optimization; Efficiency; Temperature

Full Text:

PDF


References


H. X. Duan, Research Progress in the Stability of Organic-Inorganic Hybrid Perovskite Solar Cells, in Materials Science Forum, 2020, vol. 980, pp. 97-106: Trans Tech Publ.
https://doi.org/10.4028/www.scientific.net/MSF.980.97

Y. Wen, G. Zhu, and Y. Shao, Improving the power conversion efficiency of perovskite solar cells by adding carbon quantum dots, Journal of Materials Science, vol. 55, no. 7, pp. 2937-2946, 2020.
https://doi.org/10.1007/s10853-019-04145-9

M. Hirasawa, T. Ishihara, T. Goto, K. Uchida, and N. Miura, Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3) PbI3, Physica B: Condensed Matter, vol. 201, pp. 427-430, 1994.
https://doi.org/10.1016/0921-4526(94)91130-4

W. Farooq, A. D. Khan, A. D. Khan, A. Rauf, S. D. Khan, H. Ali, J. Iqbal, R. U. Khan, and M. Noman, Thin-Film Tandem Organic Solar Cells With Improved Efficiency, IEEE Access, vol. 8, pp. 74093-74100, 2020.
https://doi.org/10.1109/ACCESS.2020.2988325

N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, Compositional engineering of perovskite materials for high-performance solar cells, Nature, vol. 517, no. 7535, pp. 476-480, 2015.
https://doi.org/10.1038/nature14133

H. S. Jung and N. G. Park, Perovskite solar cells: from materials to devices, Small, vol. 11, no. 1, pp. 10-25, 2015.
https://doi.org/10.1002/smll.201402767

W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan, and S.-H. Wei, Halide perovskite materials for solar cells: a theoretical review, Journal of Materials Chemistry A, vol. 3, no. 17, pp. 8926-8942, 2015.
https://doi.org/10.1039/C4TA05033A

T.-B. Song, T. Yokoyama, C. C. Stoumpos, J. Logsdon, D. H. Cao, M. R. Wasielewski, S. Aramaki, and M. G. Kanatzidis, Importance of reducing vapor atmosphere in the fabrication of tin-based perovskite solar cells, Journal of the American Chemical Society, vol. 139, no. 2, pp. 836-842, 2017.
https://doi.org/10.1021/jacs.6b10734

W. Farooq, S. Tu, K. Iqbal, H. Ahmad, S. ur Rehman, A. D. Khan, and O. ur Rehman, An Efficient Non-Toxic and Non-Corrosive Perovskite Solar Cell, IEEE Access, 2020.
https://doi.org/10.1109/ACCESS.2020.3038447

A. N. Cho and N. G. Park, Impact of interfacial layers in perovskite solar cells, ChemSusChem, vol. 10, no. 19, pp. 3687-3704, 2017.
https://doi.org/10.1002/cssc.201701095

A. D. Khan and A. D. Khan, Optimization of highly efficient GaAs-silicon hybrid solar cell, Applied Physics A, vol. 124, no. 12, p. 851, 2018.
https://doi.org/10.1007/s00339-018-2279-9

A. K. Chilvery, A. K. Batra, B. Yang, K. Xiao, P. Guggilla, M. D. Aggarwal, R. Surabhi, R. B. Lal, J. R. Currie, and B. G. Penn, Perovskites: transforming photovoltaics, a mini-review, Journal of Photonics for Energy, vol. 5, no. 1, p. 057402, 2015.
https://doi.org/10.1117/1.JPE.5.057402

F. E. Subhan, A. D. Khan, F. E. Hilal, A. D. Khan, S. D. Khan, R. Ullah, M. Imran, and M. Noman, Efficient broadband light absorption in thin-film a-Si solar cell based on double sided hybrid bi-metallic nanogratings, RSC Advances, vol. 10, no. 20, pp. 11836-11842, 2020.
https://doi.org/10.1039/C9RA10232A

Q. Rehman, A. D. Khan, A. D. Khan, M. Noman, H. Ali, A. Rauf, and M. S. Ahmad, Super absorption of solar energy using a plasmonic nanoparticle based CdTe solar cell, RSC advances, vol. 9, no. 59, pp. 34207-34213, 2019.
https://doi.org/10.1039/C9RA07782K

S. ur Rehman, M. Noman, A. D. Khan, A. Saboor, M. S. Ahmad, and H. U. Khan, Synthesis of polyvinyl acetate/graphene nanocomposite and its application as an electrolyte in dye sensitized solar cells, Optik, vol. 202, p. 163591, 2020.
https://doi.org/10.1016/j.ijleo.2019.163591

A. J. Huckaba, Y. Lee, R. Xia, S. Paek, V. C. Bassetto, E. Oveisi, A. Lesch, S. Kinge, P. J. Dyson, and H. Girault, Inkjet-Printed Mesoporous TiO2 and Perovskite Layers for High Efficiency Perovskite Solar Cells, Energy Technology, vol. 7, no. 2, pp. 317-324, 2019.
https://doi.org/10.1002/ente.201800905

X. Liu, X. Tan, Z. Liu, H. Ye, B. Sun, T. Shi, Z. Tang, and G. Liao, Boosting the efficiency of carbon-based planar CsPbBr3 perovskite solar cells by a modified multistep spin-coating technique and interface engineering, Nano energy, vol. 56, pp. 184-195, 2019.
https://doi.org/10.1016/j.nanoen.2018.11.053

R. Patidar, D. Burkitt, K. Hooper, D. Richards, and T. Watson, Slot-die coating of perovskite solar cells: An overview, Materials Today Communications, vol. 22, p. 100808, 2020.
https://doi.org/10.1016/j.mtcomm.2019.100808

M. F. M. Noh, N. A. Arzaee, J. Safaei, N. A. Mohamed, H. P. Kim, A. R. M. Yusoff, J. Jang, and M. A. M. Teridi, Eliminating oxygen vacancies in SnO2 films via aerosol-assisted chemical vapour deposition for perovskite solar cells and photoelectrochemical cells, Journal of Alloys and Compounds, vol. 773, pp. 997-1008, 2019.
https://doi.org/10.1016/j.jallcom.2018.09.273

Y. Zhang, L. Luo, J. Hua, C. Wang, F. Huang, J. Zhong, Y. Peng, Z. Ku, and Y.-b. Cheng, Moisture assisted CsPbBr3 film growth for high-efficiency, all-inorganic solar cells prepared by a multiple sequential vacuum deposition method, Materials Science in Semiconductor Processing, vol. 98, pp. 39-43, 2019.
https://doi.org/10.1016/j.mssp.2019.03.021

R. Du, K. Yang, X. Gao, W. Shi, W. Du, Y. Zhang, and T. Suemasu, Formation of poly-crystalline BaSi2 thin films by pulsed laser deposition for solar cell applications, Materials Letters, vol. 260, p. 126936, 2020.
https://doi.org/10.1016/j.matlet.2019.126936

S. A. A. Kazmi, A. D. Khan, A. D. Khan, A. Rauf, W. Farooq, M. Noman, and H. Ali, Efficient materials for thin-film CdTe solar cell based on back surface field and distributed Bragg reflector, Applied Physics A, vol. 126, no. 1, pp. 1-8, 2020.
https://doi.org/10.1007/s00339-019-3221-5

L. Zhou, J. Chang, Z. Liu, X. Sun, Z. Lin, D. Chen, C. Zhang, J. Zhang, and Y. Hao, Enhanced planar perovskite solar cell efficiency and stability using a perovskite/PCBM heterojunction formed in one step, Nanoscale, vol. 10, no. 6, pp. 3053-3059, 2018.
https://doi.org/10.1039/C7NR07753J

W. Farooq, A. D. Khan, M. Khan, and J. Iqbal, Enhancing the Absorption and Power Conversion Efficiency of Organic Solar Cells, International Journal of Engineering Works, vol. 06, no. 03, pp. 94-97, march 2019.

W. Farooq, A. D. Khan, A. D. Khan, and M. Noman, Enhancing the power conversion efficiency of organic solar cells, Optik, vol. 208, p. 164093, 2020.
https://doi.org/10.1016/j.ijleo.2019.164093

Y. Zhao, S. Yuan, D. Kou, Z.-J. Zhou, X. Wang, H. Xiao, Y. Deng, C. Cui, Q. Chang, and S. Wu, High Efficiency CIGS Solar Cells by Bulk Defect Passivation through Ag Substituting Strategy, ACS Applied Materials & Interfaces, 2020.
https://doi.org/10.1021/acsami.9b21354

B. Abd El Halim, A. Mahfoud, and D. M. Elamine, Numerical analysis of potential buffer layer for Cu2ZnSnS4 (CZTS) solar cells, Optik, vol. 204, p. 164155, 2020.
https://doi.org/10.1016/j.ijleo.2019.164155

J. Gao, W. Gao, X. Ma, Z. Hu, C. Xu, X. Wang, Q. An, C. Yang, X. Zhang, and F. Zhang, Over 14.5% efficiency and 71.6% fill factor of ternary organic solar cells with 300 nm thick active layers, Energy & Environmental Science, 2020.
https://doi.org/10.1039/C9EE04020J

M. I. Hossain, B. Aïssa, I. Zimmermann, M. K. Nazeeruddin, and A. Belaidi, Development of an inorganic cesium carbonate-based electron transport material for a 17% power conversion efficiency perovskite solar cell device, Journal of Photonics for Energy, vol. 10, no. 1, p. 015502, 2020.
https://doi.org/10.1117/1.JPE.10.015502

W. Farooq, T. Alshahrani, S. A. A. Kazmi, J. Iqbal, H. A. Khan, M. Khan, A. A. Raja, and A. ur Rehman, Materials optimization for thin-film copper indium gallium selenide (CIGS) solar cell based on distributed braggs reflector, Optik, vol. 227, p. 165987, 2021.
https://doi.org/10.1016/j.ijleo.2020.165987

K. A. Bangash, S. A. A. Kazmi, W. Farooq, S. Ayub, M. A. Musarat, W. S. Alaloul, M. F. Javed, and A. Mosavi, Thickness Optimization of Thin-Film Tandem Organic Solar Cell, Micromachines, vol. 12, no. 5, p. 518, 2021.
https://doi.org/10.3390/mi12050518

F. E. Subhan, A. D. Khan, A. D. Khan, N. Ullah, M. Imran, and M. Noman, Optical optimization of double-side-textured monolithic perovskite-silicon tandem solar cells for improved light management, RSC Advances, vol. 10, no. 45, pp. 26631-26638, 2020.
https://doi.org/10.1039/D0RA04634E

S. Jamal, A. D. Khan, and A. D. Khan, High performance perovskite solar cell based on efficient materials for electron and hole transport layers, Optik, vol. 218, p. 164787, 2020.
https://doi.org/10.1016/j.ijleo.2020.164787

J. Yu, Y. Gao, L. Wang, L. Wang, X. Niu, J. Yang, and H. Zhao, Anti-reductive properties of AZO/FTO bilayered transparent conducting films, Surface Engineering, vol. 36, no. 1, pp. 1-5, 2020.
https://doi.org/10.1080/02670844.2017.1418712

J. Wu, C. Zhen, T. Wu, C. Jia, M. Haider, G. Liu, and H.-M. Cheng, Reconstructed transparent conductive layers of fluorine doped tin oxide for greatly weakened hysteresis and improved efficiency of perovskite solar cells, Chemical Communications, vol. 56, no. 1, pp. 129-132, 2020.
https://doi.org/10.1039/C9CC08102J

A. Bag, R. Radhakrishnan, R. Nekovei, and R. Jeyakumar, Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation, Solar Energy, vol. 196, pp. 177-182, 2020.
https://doi.org/10.1016/j.solener.2019.12.014

Y.-N. Zhang, B. Li, L. Fu, Q. Li, and L.-W. Yin, MOF-derived ZnO as electron transport layer for improving light harvesting and electron extraction efficiency in perovskite solar cells, Electrochimica Acta, vol. 330, p. 135280, 2020.
https://doi.org/10.1016/j.electacta.2019.135280

Y. Bai, H. Yu, Z. Zhu, K. Jiang, T. Zhang, N. Zhao, S. Yang, and H. Yan, High performance inverted structure perovskite solar cells based on a PCBM: polystyrene blend electron transport layer, Journal of Materials Chemistry A, vol. 3, no. 17, pp. 9098-9102, 2015.
https://doi.org/10.1039/C4TA05309E

D. Wang, C. Wu, W. Luo, X. Guo, B. Qu, L. Xiao, and Z. Chen, ZnO/SnO2 double electron transport layer guides improved open circuit voltage for highly efficient CH3NH3PbI3-based planar perovskite solar cells, ACS Applied Energy Materials, vol. 1, no. 5, pp. 2215-2221, 2018.
https://doi.org/10.1021/acsaem.8b00293

R. C. MacKenzie, C. G. Shuttle, G. F. Dibb, N. Treat, E. von Hauff, M. J. Robb, C. J. Hawker, M. L. Chabinyc, and J. Nelson, Interpreting the density of states extracted from organic solar cells using transient photocurrent measurements, The Journal of Physical Chemistry C, vol. 117, no. 24, pp. 12407-12414, 2013.
https://doi.org/10.1021/jp4010828

A. D. Khan, F. E. Subhan, A. D. Khan, S. D. Khan, M. S. Ahmad, M. S. Rehan, and M. Noman, Optimization of efficient monolithic perovskite/silicon tandem solar cell, Optik, p. 164573, 2020.
https://doi.org/10.1016/j.ijleo.2020.164573

P. Lin, L. Lin, J. Yu, S. Cheng, P. Lu, and Q. Zheng, Numerical simulation of Cu2ZnSnS4 based solar cells with In2S3 buffer layers by SCAPS-1D, Journal of Applied Science and Engineering, vol. 17, no. 4, pp. 383-390, 2014.

R. Foster, M. Ghassemi, and A. Cota, Solar energy: renewable energy and the environment. CRC Press, 2009.
https://doi.org/10.1201/9781420075670

E. Mkawi, Y. Al-Hadeethi, E. Shalaan, and E. Bekyarova, Solution-processed sphere-like Cu 2 ZnSnS 4 nanoparticles for solar cells: effect of oleylamine concentration on properties, Applied Physics A, vol. 126, no. 1, p. 50, 2020.
https://doi.org/10.1007/s00339-019-3233-1


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize