Open Access Open Access  Restricted Access Subscription or Fee Access

Estimation of Return-Stroke Peak Current of Lightning Strokes Registered by WWLLN: a Case Study

Svetlana Yurievna Karanina(1), Nikolay Viktorovich Baranovskiy(2*), Andrey Vladimirovich Karanin(3), Marina Yurievna Belikova(4)

(1) Gorno-Altaysk State University, Russian Federation
(2) National Research Tomsk Polytechnic University, Russian Federation
(3) Gorno-Altaysk State University, Russian Federation
(4) Gorno-Altaysk State University, Russian Federation
(*) Corresponding author



Forest fire danger predicting models should have information about the return-stroke peak current of lightning strokes. The purpose of this work is to obtain statistical characteristics of the return-stroke peak current of lightning strokes recorded by WWLLN in the Republic of Buryatia (Russian Federation). The Republic of Buryatia has a mountainous relief. Orography influences the physical conditions for the formation of thunderclouds. The originality of the research is determined by the analysis of the distributions of the return-stroke peak current for lightning discharges over different altitude zones of the Buryatia. Similar studies have been carried out, for example, for the territories of the North Caucasus, Germany, and the USA. Digital elevation model SRTMGL3 and free geoinformation software QGIS and GRASS have been used for statistical and spatial analysis. The calculation of the statistical characteristics and the construction of distributions have been performed for 171,900 lightning discharges registered by WWLLN. The average current has been ~ 69 kA, the median has been ~ 43 kA, with an average power error of 9%. For 84% of lightning discharges, the current does not exceed 100 kA. An increase in the current of lightning discharges with an increase in altitude above sea level has been noted. The average amperage and the median, are ~ 57 kA and ~ 39 kA for low mountains (less than 1000 m), ~ 70 kA and ~ 43 kA for middle mountains (from 1000 to 2000 m), and ~ 100 kA and ~ 56 kA for high mountains (more than 2000 m), respectively. The results obtained can be used to predict and assess the forest fire danger.
Copyright © 2021 Praise Worthy Prize - All rights reserved.


Peak Current; Lightning Stroke; WWLLN; Forest Fire Danger; Estimation

Full Text:



Sevinc V., Kucuk O., Goltas M. A Bayesian network model for prediction and analysis of possible forest fire causes // Forest Ecology and Management. 2020. Vol. 457. Article 117723

Baranovskiy, N. V. (2020). Predicting, Monitoring, and Assessing Forest Fire Dangers and Risks. IGI Global.

Baranovskiy, N. V. (2020). Mathematical Simulation of Anthropogenic Load on Forested Territories for Point Source. In Baranovskiy, N. V. (Eds.), Predicting, Monitoring, and Assessing Forest Fire Dangers and Risks (pp. 64-88). IGI Global.

Belikova, M. Y., & Glebova, A. V. (2020). Cluster Analysis Algorithms for RS and WWLLN Data Processing. In Baranovskiy, N. V. (Ed.), Predicting, Monitoring, and Assessing Forest Fire Dangers and Risks (pp. 151-181). IGI Global.

Chen F., Du Y., Niu S., Zhao J. Modeling forest lightning fire occurrence in the Daxinganling mountains of Northeastern China with MAXENT // Forests. 2015. Vol. 6. P. 1422 – 1438.

Narayanaraj G., Wimberly M.C. Influnces of forest roads on the spatial patterns of human- and lightning-caused wildfire ignitions // Applied Geography. 2012. Vol. 32. P. 878 – 888.

Pineda N., Montanya J., van der Velde O.A. Characteristics of lightning related to wildfire ignitions in Catalonia // Atmospheric Research. 2014. Vol. 135-136. P. 380 – 387.

Adzhiev A.Kh., Bogachenko E.M. Thunderstorms of the North Caucasus. Nalchik: Polygradoservis and T, 2011. 151 p. (In Russian)

Adzhiev, A. Kh., Kuliev, D.D., Adzhieva, A.A., Kupovykh, G.V., Tumgoeva, Kh. A. Determination of the parameters of lightning discharges using the LS8000 lightning detector // Proceedings of higher educational institutions. North Caucasian region. Natural Sciences. 2018. N 3. P. 55-62. (In Russian)

World Wide Lightning Location Network. (Accessed 28 September 2020).

Muller M.M., Vacik H. Characteristics of lightnings igniting forest fires in Austria // Agricultural and Forest Meteorology. 2017. Vol. 240-241. P. 26 – 34.

Lee, B.S., M.E. Alexander, B.C. Hawkes, T.J. Lynham, B.J. Stocks, and P. Englefield. 2002. Information systems in support of wildland fire management decision making in Canada. Computers and Electronics in Agriculture 37(1-3): 185-198.

Diendorfer G. Lightning location system (LLS). In IX International Symposium on Lightning Protection. Foz do Iguacu, Brazil. 2007.

Schulz W., Cummins K.L., Diendorfer G., Dorninger M. Cloud-to-ground lightning in Austria: a 10-year study using data from a lightning location system // Journal of Geophysical Research. 2005. Vol. 110 (D9).

Austrian Lightning Detection and Information System (ALDIS). Lightning Statistics Austria. 2009. (Accessed 27 September 2020)

Biagi Ch.J., Cummins K.L., Kehoe K.E., Krider Ph.E. National Lightning Detection Network (NLDN) performance in southern Arizona, Texas and Oklahoma in 2003-2004 // Journal of Geophysical Research. 2007. Vol. 112 (D05208).

Castedo-Dorado F., Rodriguez-Perez J.R., Marcos-Menendez J.L., Alvarez-Taboada M.F. Modelling the probability of lightning-induced forest fire occurrence in the province of Leon (NW Spain) // Forest System. 2011. Vol. 20. P. 95 – 107.

Outcalt K.W. Lightning, fire and longleaf pine: using natural disturbance to guide management // Forest Ecology and Management. 2008. Vol. 255. P. 3351 – 3359.

Podur J., Martell D.L., Csillag F. Spatial patterns of lightning caused forest fires in Ontario, 1976 – 1998 // Ecological Modelling. 2003. Vol. 164. P. 1 – 20.

Schulz W. Location accuracy improvements of the Austrian lightning location system during the last 10 years. In 9th Asia-Pacific International Conference on Lightning (APL). Nagoya. Japan. 2015.

Vecin-Arias D., Castedo-Dorado F., Ordonez C., Rodriguez-Perez R.J Biophysical and lightning characteristics drive lightning-induced fire occurrence in the central plateau of the Iberian Peninsula // Agricultural and Forest Meteorology. 2016. Vol. 225. P. 36 – 47.

Krawchuk M.A., Cumming S.G., Flannigan M.D., Wein R.W. Biotic and abiotic regulation of lightning fire initiation in the mixedwood boreal forest // Ecology. 2006. Vol. 87. P. 458 – 468.

Verdu F., Salas J., Vega-Garcia C. A multivariate analysis of biophysical factors and forest fires in Spain, 1991 – 2005 // International Journal of Wildland Fire. 2012. Vol. 21. P. 498 – 509.

Moris J.V., Conedera M., Nisi L., Bernardi M., Cesti G., Pezzatti G.B. Lightning-caused fires in the Alps: Identifying the igniting strokes // Agricultural and Forest Meteorology. 2020. Vol. 290. Article 107990. Doi: 10.1016/j.agrformet.2020.107990

European Cooperation for Lightning Detection (EUCLID). (accessed 27 September 2020).

Pineda N., Rigo T. The rainfall factor in lightning-ignited wildfires in Catalonia // Agricultural and Forest Meteorology. 2017. Vol. 239. P. 249 – 263.

Nieto H., Aguado I., Garcia M., Chuvieco E. Lightning-caused fires in Central Spain: development of a probability model of occurrence for two Spanish regions // Agricultural and Forest Meteorology. 2012. Vol. 162-163. P. 35-43.

Marshall J.S., Radhakant S. Radar precipitation maps as lightning indicators // Journal of Applied Meteorology. 1978. Vol. 5. P. 165 – 166.<0206:rpmali>;2

Sheridan S.C., Griffiths J.F., Orville R.E. Warm season cloud-to-ground lightning-precipitation relationships in the south-central United States // Weather Forecast. 1997. Vol. 12. P. 449 – 458.<0449:wsctgl>;2

Petersen W.A., Rutledge S.A. On the relationship between cloud-to-ground lightning and convective rainfall // Journal of Geophysical Research. 1998. Vol. 103. P. 14025 – 14040.

Soula S., Chauzy S. Some aspects of the correlation between lightning and rain activities in thunderstorms // Atmospheric Research. 2001. Vol. 56. P. 355 – 373.

Pineda N., Rigo T., Bech J., Soler X. Lightning and precipitation relationship in summer thunderstorms: case studies in the north western Mediterranean region // Atmospheric Research. 2007. Vol. 85. P. 159 – 170.

Hall B.L. Fire ignitions related to radar reflectivity patterns in Arizona and New Mexico // International Journal of Wildland Fire. 2008. Vol. 17. P. 317 – 327.

Couto F.T., Iakunin M., Salgado R., Pinto P., Viegas T., Pinty J.-P. Lightning modeling for the research of forest fire ignition in Portugal // Atmospheric Research. 2020. Vol. 242. Article 104993.

Lafore J.-P., Stein J., Asencio N., Bougeault P., Ducrocq V., Duron J., Fischer C., Herell P., Mascart P., Masson V., Pinty J.-P., Redelsperger J.-L., Richard E., Vila-Guerau de Arellano J. The meso-NH atmospheric simulation system. Part I: adiabatic formulation and control simulation // Annales Geophysicae. 1998. Vol. 16. P. 90 – 109.

C. Lac, J.-P. Chaboureau, V. Masson, J.-P. Pinty, P. Tulet, J. Escobar, M. Leriche, C. Barthe, B. Aouizerats, C. Augros, P. Aumond, F. Auguste, P. Bechtold, S. Berthet, S. Bielli, F. Bosseur, O. Caumont, J.-M. Cohard, J. Colin, F. Couvreux, J. Cuxart, G. Delautier, T. Dauhut, V. Ducrocq, J.-B. Filippi, D. Gazen, O. Geoffroy, F. Gheusi, R. Honnert, J.-P. Lafore, C. Lebeaupin Brossier, Q. Libois, T. Lunet, C. Mari, T. Maric, P. Mascart, M. Mogé, G. Molinié, O. Nuissier, F. Pantillon, P. Peyrillé, J. Pergaud, E. Perraud, J. Pianezze, J.-L. Redelsperger, D. Ricard, E. Richard, S. Riette, Q. Rodier, R. Schoetter, L. Seyfried, J. Stein, K. Suhre, M. Taufour, O. Thouron, S. Turner, A. Verrelle, B. Vié, F. Visentin, V. Vionnet, P. Wautelet Overview of the Meso-NH model version 5.4 and its applications // Geoscientific Model Development. 2018. Vol. 11. P. 1929 – 1969.

V. Masson, P. Moigne, É. Martin, S. Faroux, A. Alias, R. Alkama, S. Belamari, A. Barbu, A. Boone, F. Bouyssel, P. Brousseau, E. Brun, J. Calvet, D. Carrer, B. Decharme, C. Delire, S. Donier, K. Essaouini, A.-L. Gibelin, H. Giordani, F. Habets, M. Jidane, G. Kerdraon, Ekaterina Kourzeneva, M. Lafaysse, S. Lafont, C. L. Brossier, A. Lemonsu, J.-F. Mahfouf, P. Marguinaud, M. Mokhtari, S. Morin, G. Pigeon, R. Salgado, Y. Seity, F. Taillefer, G. Tanguy, P. Tulet, B. Vincendon, V. Vionnet, A. Voldoire The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes // Geoscientific Model Development. 2013. Vol. 6. P. 929 – 960.

Barthe C., Chong M., Pinty J.-P., Bovalo C., Escobar J. CELLS v1.0: updated and parallelized version of an electrical scheme to simulate multiple electrified clouds and flashes over large domain // Geoscientific Model Development. 2012. Vol. 5. P. 167 – 184.

Zhu Y., Rakov V.A., Mallik S., Tran M.D. Characterization of negative cloud-to-ground lightning in Florida // Journal of Atmospheric and Solar-Terrestrial Physics. 2015. Vol. 136. P. 8 – 15.

Thottappillil R., Rakov V.A., Uman M.A., Beasley W.H., Master M.J., Shelukhin D.V. Lightning subsequent-stroke electric field peak greater than the first stroke peak and multiple ground terminations // Journal of Geophysical Research. 1992. Vol. 97. P. 7503 – 7509.

Rakov V.A., Uman M.A., Thottappillil R. Review of lightning properties from electric field and TV observations // Journal of Geophysical Research. 1994. Vol. 99. P. 10745 – 10750.

Saraiva A.C.V., Saba M.M.F., Pinto O., Cummins K.L., Krider E.P., Campos L.Z.S. A comparative study of negative cloud-to-ground lightning characteristics in Sao Paulo (Brazil) and Arizona (United States) based on high-speed video observations // Journal of Geophysical Research. 2010. Vol. 115. D11102.

Xie Y., Xu K., Zhang T., Liu X. Five-year study of cloud-to-ground lightning activity in Yunnan province, China // Atmospheric Research. 2013. Vol. 129-130. P. 49 – 57.

Orville R.E., Huffins G.R. Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989 – 98 // Monthly Weather Review. 2001. Vol. 129. P. 1179 – 1193.<1179:ctglit>;2

Li X., Pan Y., Mo Z. Joint effects of several factors on cloud-to-ground lightning and rainfall in Nanning (China) // Atmospheric Research. 2018. Vol. 212. P. 23 – 32.

Chan H.G., Mohamed A.I.B. Investigation on the occurrence of positive cloud to ground (+CG) lightning in UMP Pekan // Journal of Atmospheric and Solar-Terrestrial Physics. 2018. Vol. 179. P. 206 – 213.

Suparta W., Adnan J., Alauddin M., Ali M. Monitoring the association between GPS PWV and lightning activity during the 2009 Winter Monsoon over Bangi Malaysia // 2011 International Conference on Environment Science and Engineering IPCBEE. 2011. Vol. 8. P. 101 – 106.

Aranguren D., Lopez J., Inampues J., Torres H., Betz H. Cloud-to-ground lightning activity in Colombia and the influence of topography // Journal of Atmospheric and Solar-Terrestrial Physics. 2017. Vol. 154. P. 182 – 189.

Holler H., Betz H.D., Schmidt K., Calheiros R., May P., Houngninou E., Scialom G. Lightning characteristics observed by a VLF/LF lightning detection network (LINET) in Brazil, Australia, Africa and Germany // Atmospheric Chemical Physics. 2009. Vol. 9. P. 7795 – 7824.

Betz H.D., Schmidt K., Oettinger W.P., Wirz M. Lightning detection with 3D-discrimination of intracloud and cloud-to-ground discharges // Journal of Geophysical Research Letters. 2004. Vol. 31. L11108.

Betz H.D., Schmidt K., Fuch B., Oettinger W.P., Holler H. Cloud lightning: detection and utilization for total lightning measured in the VLF/LF regime // Journal of Lightning Research. 2009. Vol. 2. P. 1 – 17.

Aranguren D., Lopez J., Inampues J., Torres H., Betz H.D. Overview of the cloud-to-ground lightning activity in Colombia // In International Conference on Grounding and Earthing and 6th International Conference on Lightning Physics and Effects. Manaus. Brazil. 2014.

Dowden R.L., Brundell J.B., Rodger C.J. VLF lightning location by time of group arrival (TOGA) at multiple sites // Journal of Atmospheric and Solar-Terrestrial Physics. 2002. Vol. 64. P. 817 – 830.

Kozlov V.I., Mullayarov V.A., Karimov R.R. Spatial distribution of the density of lightning discharges in the East of Russia according to remote sensing data // Modern problems of remote sensing of the Earth from space. 2011. Vol. 8. N 3. P. 257-262. (In Russian).

Tarabukina L.D., Kozlov V.I. Comparison of measurements of several systems for registration of thunderstorm radio pulses // Bulletin of the North-Eastern Federal University named after MK Ammosov. 2018. N 2. P. 77-86 (In Russian).

Abarca S.F., Kristen L., Corbosiero I., Thomas J., Galarneau Jr. An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth // Journal of Geophysical Research. 2010. Vol. 115. Article D18206.

Snegurov A.V., Snegurov V.S. Comparison of the characteristics of multipoint lightning-direction finding systems // Proceedings of the Main Geophysical Observatory named after A.I. Voeikova. 2019. N 595. P. 22-62. (In Russian).

Bulatov A.A., Kuterin F.A., Shlyugaev Yu.V. Regional network of passive lightning direction finding in the Nizhny Novgorod region // Meteorology and Hydrology. 2017. N 6. P. 113-121. (In Russian).

Thunderstorm registration systems ALWES. (Accessed 28 September 2020).

Moskovenko V.M., Znamenshchikov B.P., Zolotarev S.V. Application of the Vereya-MR lightning-direction finding system in the interests of the electric power industry of Russia // New in the Russian electric power industry. 2012. N 2. P. 15-23. (In Russian)

M.S. Permyakov, E.Yu. Potalova, T.I. Kleshcheva Thunderstorm Activity in the Primorsky Krai // Russian Meteorology and Hydrology. 2019. Vol. 44. P. 818–824.

Hutchins M.L., Holzworth R.H., Rodger C.J., Brundell J.B. Far-field power of lightning strokes as measured by the World Wide Lightning Location Network // Journal of Atmospheric and Oceanic technology. 2012. Vol. 29. P. 1102 - 1110.

NASA JPL Shuttle Radar Topography Mission. (Accessed 28 September 2020).

USGS EarthExplorer. (Accessed 28 September 2020).

QGIS – A Free and Open Source Geographic Information System. (Accessed 28 September 2020).

GRASS – Geographic Resources Analysis Support System. (Accessed 28 September 2020).

Baranovskiy, N., Forest Fire Danger Assessment Using SPMD-Model of Computation for Massive Parallel System, (2017) International Review on Modelling and Simulations (IREMOS), 10 (3), pp. 193-201.

Baranovskiy N.V., Kuznetsov G.V., Nemova T.N. Mathematical computing of coniferous tree ignition by the cloud-to-ground lightning discharge using Joule-Lenz's law // International Journal of Electrical and Computer Engineering. 2017. Vol. 7. pp. 1337-1346.

RAD Studio. (Accessed 15 December 2020).

S.Yu. Karanina, A.V. Karanin, N.V. Baranovsky, N.A. Kocheeva, M.Yu. Belikova Analysis of lightning discharges activity within the territory of Buryatia in 2010-2016 based on WWLLN data // IOP Conference Series: Earth and Environmental Science. 2019. Vol. 381. Article 012038.

Boccippio D.J., Cummins K.L., Christian H.J., Goodman S.J. Combined satellite-and surface-based estimation of the intracloud–cloud-to-ground lightning ratio over the continental United States // Monthly Weather Review. 2001. Vol. 129. N 1. P. 108-122.<0108:csasbe>;2

Kozlov V.I., Mullayarov V.A., Grigoriev Yu.M., Tarabukina L.D. Parameters of thunderstorm activity and lightning discharges on the territory of central Yakutia in 2009-2012 // Izvestia of the Russian Academy of Sciences. Physics of the atmosphere and ocean. 2014. Vol. 50. N 3. P. 365-365. (In Russian).

Ershova T.V., Gorbatenko V.P. Parameters of thunderstorm activity from instrumental measurements // Bulletin of the Tomsk State Pedagogical University. 2011. N 5. P. 150-154. (In Russian).

Soriano L.R., De Pablo F., Tomas C. Ten-year study of cloud-to-ground lightning activity in the Iberian Peninsula // Journal of Atmospheric and Solar-Terrestrial Physics. 2005. Vol. 67. P. 1632-1639.


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2021 Praise Worthy Prize