Open Access Open Access  Restricted Access Subscription or Fee Access

Trend of Sulfur Hexafluoride (SF6) Gas Mixtures and Other Alternatives as Insulation Gas: an Overview


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v16i5.18937

Abstract


Research works are actively ongoing to seek a solution for reducing the usage of sulfur hexafluoride (SF6) as a gas insulator in high-voltage equipment since it was listed as one of the greenhouse gases under the Kyoto Protocol. However, manufacturers still in favor of using SF6 due to its excellent insulation and arc-quenching properties. One way to reduce SF6 usage is to mix it with other gases or replace it with alternative gas mixtures. The research status of SF6 gas mixtures and other potential substitutes is summarized in this paper. Electrical insulation properties, physical and chemical mechanisms, and environmental considerations, along with the scope and limitations of such mixtures were analyzed. The development prospects of SF6 gas mixtures were forecasted based on their best mixture ratio. Hybrid insulation gases consisting of three compounds (two electronegative gases with one buffer gas) have shown to be an ideal compromise in terms of cost, distinguished low environmental impact, and high dielectric strength. Trifluoroiodomethane (CF3I) offers great advantages among other dielectric gases, since it exerts minimal greenhouse effects, and has a considerable liquefaction temperature and higher dielectric strength. Therefore, the application of CF3I for reducing the usage of SF6 in gas mixtures was highlighted. The fundamental knowledge on the breakdown strength of the gas mixtures and their behavior under different electric fields need to be analyzed before any recommendations can be made.
Copyright © 2021 Praise Worthy Prize - All rights reserved.

Keywords


Gas Insulation; SF6 Gas Mixtures; Alternative Gases; CF3I Gas Mixtures

Full Text:

PDF


References


A. Beroual and A. M. Haddad, Recent advances in the quest for a new insulation gas with a low impact on the environment to replace sulfur hexafluoride (SF6) gas in high-voltage power network applications, Energies, vol. 10, p. 1216, 2017.
https://doi.org/10.3390/en10081216

Y. Tu, G. Chen, and C. Li, ±100-kV HVDC SF6/N2 gas-insulated transmission line, IEEE Trans. Power Deliv., Jun. 2019.
https://doi.org/10.1109/TPWRD.2019.2925519

D. A. Glushkov, A. I. Khalyasmaa, S. A. Dmitriev, and S. E. Kokin, Electrical strength analysis of SF6 gas circuit breaker element, AASRI Procedia, vol. 7, pp. 57-61, 2014.
https://doi.org/10.1016/j.aasri.2014.05.029

N. F. Ambo, H. Zainuddin, M. S. Kamarudin, and J. M. Wari, Finite element analysis of maximum electric field for air breakdown under various electrode configurations, Indones. J. Electr. Eng. Comput. Sci., vol. 10, no. 2, pp. 416-425, 2018.
https://doi.org/10.11591/ijeecs.v10.i2.pp416-425

S. Okabe, J. Wada, and G. Ueta, Dielectric properties of gas mixtures with C3F8/C2F6 and N2/CO2, IEEE Trans. Dielectr. Electr. Insul., vol. 22, no. 4, pp. 2108-2116, 2015.
https://doi.org/10.1109/TDEI.2015.005040

Y. Li, X. Zhang, S. Xiao, Q. Chen, and D. Wang, Decomposition characteristics of C5F10O/air mixture as substitutes for SF6 to reduce global warming, J. Fluor. Chem., vol. 208, no. 299, pp. 65-72, 2018.
https://doi.org/10.1016/j.jfluchem.2018.01.015

X. Zhang et al., Experimental study on power frequency breakdown characteristics of C4F7N/CO2 gas mixture under quasi-homogeneous electric field, IEEE Access, vol. 7, pp. 19100-19108, 2019.
https://doi.org/10.1109/ACCESS.2019.2897749

X. Wang et al., Investigation of dielectric properties of cold C3F8 mixtures and hot C3F8 gas as substitutes for SF6, Eur. Phys. J. D, vol. 69, no. 10, Oct. 2015.
https://doi.org/10.1140/epjd/e2015-60327-9

L. Lin, Q. Chen, X. Wang, H. Zhang, H. Feng, and C. Zhang, AC breakdown characteristics of c-C4F8/N2 gas mixtures in an extremely non-uniform electric field, Energies, vol. 11, p. 3533, Dec. 2018.
https://doi.org/10.3390/en11123533

H. Okubo and A. Beroual, Recent trend and future perspectives in electrical insulation techniques in relation to sulfur hexafluoride (SF6) substitutes for high voltage electric power equipment, IEEE Electr. Insul. Mag., vol. 27, pp. 34-42, 2005.
https://doi.org/10.1109/MEI.2011.5739421

C. Guo et al., Influence of electric field non-uniformity on breakdown characteristics in SF6/N2 gas mixtures under lightning impulse, IEEE Trans. Dielectr. Electr. Insul., vol. 24, no.4, pp. 2248-2258, 2017.
https://doi.org/10.1109/TDEI.2017.006261

R. Ullah, Z. Ullah, A. Haider, S. Amin, and F. Khan, Dielectric properties of tetrafluoroethane (R134) gas and its mixtures with N2 and air as a sustainable alternative to SF6 in high voltage applications, Electr. Power Syst. Res., vol. 163, no. April, pp. 532-537, 2018.
https://doi.org/10.1016/j.epsr.2018.04.019

R. Zhong et al., Insulation characteristics of CF3I/c-C4F8/N2 gas mixtures in slightly non-uniform electric field, IEEE Trans. Dielectr. Electr. Insul., vol. 25, no. 4, pp. 1371-1379, 2018.
https://doi.org/10.1109/TDEI.2017.007128

X. Li, H. Zhao, and A. B. Murphy, SF6-alternative gases for application in gas-insulated switchgear, J. Phys. D. Appl. Phys., vol. 51, no. 15, Art. 153001, 2018.
https://doi.org/10.1088/1361-6463/aab314

M. Rabie and C. M. Franck, Computational screening of new high voltage insulation gases with low global warming potential, IEEE Trans. Dielectr. Electr. Insul., vol. 22, no. 1, pp. 296-302, 2014.
https://doi.org/10.1109/TDEI.2014.004474

Y. Wang, D. Huang, J. Liu, Y. Zhang, and L. Zeng, Alternative environmentally friendly insulating gases for SF6, Processes, vol. 7, no. 216, pp. 1-14, Apr. 2019.
https://doi.org/10.3390/pr7040216

S. Kosse, P. G. Nikolic, and G. Kachelriess, Holistic evaluation of the performance of today's SF6 alternatives proposals, in 24th Int. Conf. Exhib. Electr. Distrib., vol. 2017, no. 1, pp. 210-213, 2017.
https://doi.org/10.1049/oap-cired.2017.0819

Y. Qiu and E. Kuffel, Dielectric strength of gas mixtures comprising SF6/CO/c-C4F8 and SF6/N2/c-C4F8, IEEE Trans. Power Appar. Syst., vol. 102, no. 5, pp. 1445-1451, 1983.
https://doi.org/10.1109/TPAS.1983.318099

M. Hikita and S. Ohtsuka, Insulation characteristics of gas mixtures including perfluorocarbon gas, IEEE Trans. Dielectr. Electr. Insul., vol. 15, no. 4, pp. 1015-1022, 2008.
https://doi.org/10.1109/TDEI.2008.4591222

D. Raghavender and M. S. Naidu, Lightning impulse study of SF6/N2 mixtures with 0.1% to 20% SF6 content for rod-plane GPS with both positive and negative voltages, in Conference on Electrical Insulation & Dielectric Phenomena - Annual Report 1986, 1986, pp. 327-332.
https://doi.org/10.1109/CEIDP.1986.7726463

N. H. Malik and A. H. Qureshi, A review of electrical breakdown in mixtures of SF6 and other gases, IEEE Trans. Electr. Insul., vol. EI-14, no. 1, pp. 1-13, 1979.
https://doi.org/10.1109/TEI.1979.298198

Y. Wang et al., Breakdown characteristics of SF6/N2 in severely non-uniform electric fields at low temperatures, IOP Conf. Ser. Mater. Sci. Eng., vol. 292, no. 1, pp. 1-6, 2018.
https://doi.org/10.1088/1757-899X/292/1/012044

Y. Qiu and E. Kuffel, Comparison of SF6/N2 and SF/C02 gas mixtures as alternatives to SF6 Gas, IEEE Trans. Dielectr. Electr. Insiulation, vol. 6, no. 6, pp. 892-895, 1999.
https://doi.org/10.1109/94.822033

S. Woo et al., A study on dielectric strength and insulation property of SF6/N2 mixtures for GIS, J. Int. Counc. Electr. Eng., vol. 2, no. 1, pp. 104-109, 2012.
https://doi.org/10.5370/JICEE.2012.2.1.104

F. Guastavino, A. Ratto, F. Porcile, E. Torello, and D. Santinelli, Dielectric characterization of gas mixtures as electrical insulating for high voltage components and appliances, 2013 Annu. Rep. Conf. Electr. Insul. Dielectr. Phenom., pp. 1008-1011, 2013.
https://doi.org/10.1109/CEIDP.2013.6748295

Z. Qin and C. Zhang, Insulation properties of SF6/N2 gas mixtures under high pressure and low ratio, in 2017 IEEE Electr. Power Energy Conf. Insul., pp. 3-6, 2017.
https://doi.org/10.1109/EPEC.2017.8286210

M. Cho, S. Ishiyama, and S. Ohtsuka, Search of optimum gas mixture ratio as gas insulating medium by genetic algorithm, IEEE Trans. Dielectr. Electr. Insul., vol. 11, no. 2, pp. 334-347, 2004.
https://doi.org/10.1109/TDEI.2004.1285905

Z. Li and E. Kuffel, Impulse voltage breakdown characteristics of ternary gas mixtures in a coaxial cylinder gap, IEEE Trans. Electr. Insul., vol. EI-22, no. August, pp. 479-484, 1987.
https://doi.org/10.1109/TEI.1987.298911

D. Raghavender and M. S. Naidu, A comprehensive study of lightning impulse breakdown and cost/benefit analysis of ternary gas mixtures containing two electronegative gases, in Proceedings of 1995 Conference on Electrical Insulation and Dielectric Phenomena, 1995, pp. 141-144.

X. Yu et al., Evaluation of nitrous oxide as a substitute for sulfur hexafluoride to reduce global warming impacts of ANSI/HPS N13.1 gaseous uniformity testing, Atmos. Environ., vol. 176, no. December 2017, pp. 40-46, 2018.
https://doi.org/10.1016/j.atmosenv.2017.12.015

H. Kojima et al., Breakdown characteristics of N2O gas mixtures for quasi-uniform electric field under lightning impulse voltage, IEEE Trans. Dielectr. Electr. Insul., vol. 14, no. 6, pp. 1492-1497, 2007.
https://doi.org/10.1109/TDEI.2007.4401233

M. Rabie and C. M. Franck, Comparison of gases for electrical insulation: Fundamental concepts, IEEE Trans. Dielectr. Electr. Insul., vol. 25, no. 2, pp. 649-656, 2018.
https://doi.org/10.1109/TDEI.2018.006900

Z. Guo, X. Li, and B. Li, Dielectric properties of C5-PFK mixtures as a possible SF6 substitute for MV power equipment," IEEE Tran. Dielectr. Electr. Insul., vol. 26, no. 1, pp. 129-136, 2019.
https://doi.org/10.1109/TDEI.2018.007675

M. Koch and C. M. Franck, Prediction of partial discharge and breakdown voltages in CF4 for arbitrary electrode geometries, J. Phys. D. Appl. Phys., vol. 48, no. 5, p. 55207, 2015.
https://doi.org/10.1088/0022-3727/48/5/055207

C. Hwang, B. Lee, C. Huh, N. Kim, and Y. Chang, Breakdown characteristics of SF6/CF4 mixtures in 25.8 kV, in 2009 International Conference on Electrical Machines and Systems, 2009, pp. 6-9.
https://doi.org/10.1109/ICEMS.2009.5382638

H. Sung, C. Hwang, N. Kim, and C. Huh, Non-uniform field breakdown characteristics of SF6/CF4 mixtures at various pressures, in 2008 Int. Conf. on Condition Monitoring and Diagnosis, Beijing, China, 2008, pp. 4-7.

Y. Kieffel and T. Irwin, Green gas to replace SF6 in electrical grids, IEEE Power and Energy Magazine, vol. 14, IEEE, pp. 32-39, 2016.
https://doi.org/10.1109/MPE.2016.2542645

P. C. Stoller, C. B. Doiron, D. Tehlar, P. Simka, and N. Ranjan, Mixtures of CO2 and C5F10O perfluoroketone for high voltage applications, IEEE Trans. Dielectr. Electr. Insul., vol. 24, no. 5, pp. 2712-2721, 2017.
https://doi.org/10.1109/TDEI.2017.006383

J. Wada, G. Ueta, and S. Okabe, Dielectric properties of gas mixtures with per-fluorocarbon gas and gas with low liquefaction temperature, IEEE Trans. Dielectr. Electr. Insul., vol. 23, no. 2, pp. 838-847, 2015.
https://doi.org/10.1109/TDEI.2015.005373

G. Mazzanti, G. Stomeo, and S. Mancini, State of the art in insulation of gas insulated substations: Main Issues, achievements, and trends, IEEE Electrical Insulation Magazine, vol. 32, IEEE, pp. 18-31, 2016.
https://doi.org/10.1109/MEI.2016.7552373

M. Koch and C. M. Franck, Partial discharges and breakdown in C3F8, J. Phys. D. Appl. Phys., vol. 47, no. 40, p. 405203, 2014.
https://doi.org/10.1088/0022-3727/47/40/405203

A. Romero, L. Rácz, A. Mátrai, T. Bokor, and R. Cselkó, A review of sulfur-hexafluoride reduction by dielectric coatings and alternative gases, in 2017 6th Int. Youth Conf. Energy, pp. 1-5, 2017.
https://doi.org/10.1109/IYCE.2017.8003750

S. Hu, W. Zhou, J. Yu, R. Qiu, Y. Zheng, and H. Li, Synergistic effect of i-C3F7CN/CO2 and i-C3F7CN/N2 mixtures, IEEE Access, vol. 7, pp. 50159-50167, 2019.
https://doi.org/10.1109/ACCESS.2019.2910887

C. Wang et al., Characteristics of C3F7CN/CO2 as an alternative to SF6 in HVDC-GIL systems, IEEE Trans. Dielectr. Electr. Insul., vol. 25, no. 4, pp. 1351-1356, 2018.
https://doi.org/10.1109/TDEI.2018.007494

H. Koch, F. Goll, T. Magier, and S. Ag, Technical aspects of gas insulated transmission lines and application of new insulating gases, IEEE Trans. Dielectr. Electr. Insul., vol. 25, no. 4, pp. 1448-1453, 2018.
https://doi.org/10.1109/TDEI.2018.007311

H. E. Nechmi, A. Beroual, A. Girodet, and P. Vinson, Fluoronitriles/CO2 gas mixture as promising substitute to SF6 for insulation in high voltage applications, IEEE Trans. Dielectr. Electr. Insul., vol. 23, no. 5, pp. 2587-2593, 2016.
https://doi.org/10.1109/TDEI.2016.7736816

S. Meijer, J. J. Smit, and A. Girodet, Comparison of the breakdown strength of N2, CO2 and SF6 using the extended up-and-down method, in 2006 IEEE 8th International Conference on Properties & applications of Dielectric Materials, 2006, pp. 653-656.
https://doi.org/10.1109/ICPADM.2006.284262

Y. Zheng, X. Yan, W. Chen, W. Zhou, S. Hu, and H. Li, Calculation of electrical insulation of C4F7N/CO2 mixed gas by avalanche characteristics of pure gas, Plasma Res. Express, vol. 1, no. 2, p. 25013, 2019.
https://doi.org/10.1088/2516-1067/ab26df

D. Xiao, Development prospect of gas insulation based on environmental protection, simulation and modelling of electrical insulation weaknesses in electrical equipment, in R. A. Sánchez (Ed.), Simulation and Modelling of Electrical Insulation Weaknesses in Electrical Equipment, pp. 79-102, 2018. London, UK: IntechOpen.
https://doi.org/10.5772/intechopen.77035

X. Li, S. Jia, and A. Murphy, Study of the dielectric breakdown properties of hot SF6-CF4 mixtures at 0.01-1.6 MPa, J. Appl. Phys., vol. 114, no. August, p. 053302, 2013.
https://doi.org/10.1063/1.4817370

H. S. Kharal, M. Kamran, R. Ullah, M. Z. Saleem, and M. J. Alvi, Environment-friendly and efficient gaseous insulator as a potential alternative to SF6, Processes, vol. 7, pp. 1-13, 2019.
https://doi.org/10.3390/pr7100740

B. Khan et al., Analysis of the dielectric properties of R410A gas as an alternative to SF for high-voltage applications, HIgh Volt., vol. 4, no. 1, pp. 41-48, 2019.
https://doi.org/10.1049/hve.2018.5068

K. Sumeru, P. N. Bandung, H. Nasution, and A. M. Abioye, Comparative performance between R134 and R152a in an air conditioning system of a passenger car, J. Teknol., vol. 78, no. November, 2016.
https://doi.org/10.11113/jt.v78.9661

European Parliament and EU Council, Regulation (EU) No. 517/2014 of The European Parliament and of The Council of 16 April 2014 on fluorinated greenhouse gases, Off. J. Eur. Union, vol. 2014, no. 517, pp. 195-230, 2014.

C. T. Dervos, P. Vassiliou, and C. T. Dervos, Sulfur hexafluoride (SF6): Global environmental effects and toxic by-product formation, J. Air Waste Manage. Assoc., vol. 50, no. 1, pp. 137-141, 2011.
https://doi.org/10.1080/10473289.2000.10463996

Y. Li et al., Assessment on the toxicity and application risk of C4F7N: A new SF6 alternative gas, J. Hazard. Mater., vol. 368, no. 299, pp. 653-660, 2019.
https://doi.org/10.1016/j.jhazmat.2019.01.100

L. Chen, P. Widger, M. S. Kamarudin, H. Griffiths, and A. Haddad, CF3I gas mixtures: Breakdown characteristics and potential for electrical insulation, IEEE Trans. Power Deliv., vol. 32, no. 2, pp. 1089-1097, 2017.
https://doi.org/10.1109/TPWRD.2016.2602259

X. Zhang, S. Tian, S. Xiao, Y. Li, Z. Deng, and J. Tang, Experimental studies on the power-frequency breakdown voltage of CF3I/N2/CO2 gas mixture, J. Appl. Phys., vol. 121, no. 10, p. 103303, Mar. 2017.
https://doi.org/10.1063/1.4978069

Y. U. E. Zhang et al., AC breakdown and decomposition characteristics of environmental friendly gas C5F10O/air and C5F10O/N2, IEEE Access, vol. 7, pp. 73954-73960, 2019.
https://doi.org/10.1109/ACCESS.2019.2915372

D. Xian-qin, X. U. E. Peng, Z. Su, and Z. Hui, Research on Insulation characteristics and decomposition products of c-C4F8/N2 mixtures in slightly non-uniform electric field, in 4th International Conference on Electric Power Equipment - Switching Technology, 2017, pp. 6-9.
https://doi.org/10.1109/ICEPE-ST.2017.8188839

M. S. Kamarudin, A. Haddad, B. C. Kok, and N. A. M. Jamail, Pressurised CF3I-CO2 gas mixture under lightning impulse and its solid by-products, Int. J. Electr. Comput. Eng., vol. 7, no. 6, pp. 3088-3094, 2017.
https://doi.org/10.11591/ijece.v7i6.pp3088-3094

Y. Li et al., Influence of oxygen on dielectric and decomposition properties of C4F7N-N2-O2 mixture, IEEE Trans. Dielectr. Electr. Insul., vol. 26, no. 4, pp. 1279-1286, 2019.
https://doi.org/10.1109/TDEI.2019.007996

D. Lee, Breakdown in compressed He/SF6 gas mixture in uniform field, IEEE Trans. Electr. Insul., vol. EI-21, no. 2, pp. 157-160, 1986.
https://doi.org/10.1109/TEI.1986.348939

N. F. Ambo, H. Zainuddin, M. S. Kamarudin, and J. M. Wari, AC breakdown performance analysis of SF6/N2 and SF6/CO2 gas mixtures for ring main unit (RMU) switchgear application, in 2019 IEEE 20th International Conference on Dielectric Liquids (ICDL), 2019, no. June 2019, pp. 1-4.
https://doi.org/10.1109/ICDL.2019.8796668

S. S. Tezcan and H. Duzkaya, Assessment of electron swarm parameters and limiting electric fields in SF6+CF4+Ar gas mixtures, IEEE Trans. Dielectr. Electr. Insul., vol. 23, no. 4, pp. 1996-2005, 2016.
https://doi.org/10.1109/TDEI.2016.7556471

D. Tan, B. Zhou, J. Xue, F. Cai, and D. Xiao, Basic impulse performance of high-pressure CF3I-N2 gas mixture and its application for 126 kV GIL, IEEE Trans. Dielectr. Electr. Insul., vol. 25, no. 4, pp. 1380-1386, 2018.
https://doi.org/10.1109/TDEI.2018.007137

B. Zhou, D. Tan, J. Xue, F. Cai, and D. Xiao, Lighting impulse withstand performance of CF3I-N2 gas mixture for 252 kV GIL Insulation, IEEE Trans. Dielectr. Electr. Insul., vol. 26, no. 4, pp. 1190-1196, 2019.
https://doi.org/10.1109/TDEI.2019.007949

X. Zhang, S. Xiao, Y. Han, and Q. Dai, Analysis of the feasibility of CF3I/CO2 used in C-GIS by partial discharge inception voltages in positive half cycle and breakdown voltages, IEEE Trans. Dielectr. Electr. Insul., vol. 22, no. 6, pp. 3234-3243, 2015.
https://doi.org/10.1109/TDEI.2015.005080

S. Xiao, X. Zhang, J. Tang, and S. Liu, A review on SF6 substitute gases and research status of CF3I gases, Energy Reports, vol. 4, pp. 486-496, 2018.
https://doi.org/10.1016/j.egyr.2018.07.006

Z. Geng, X. Lin, J. Xu, X. Li, X. Lu, and Z. Yang, Experimental study of CF4 insulation performance, in 2015 3rd International Conference on Electric Power Equipment - Switching Technology (ICEPE-ST), 2015, pp. 394-397.
https://doi.org/10.1109/ICEPE-ST.2015.7368401

X. Wang et al., Dielectric breakdown properties of hot SF6 gas contaminated by copper at temperatures of 300-3500K, J. Phys. D. Appl. Phys., vol. 48, no. 15, Art. 155205, 2015.
https://doi.org/10.1088/0022-3727/48/15/155205

J. de Urquijo, A. M. Juárez, E. Basurto, and J. L. Hernández-Ávila, Electron impact ionization and attachment, drift velocities and longitudinal diffusion in CF3I and CF3I-N2 mixtures, J. Phys. D. Appl. Phys., vol. 40, no. 7, pp. 2205-2209, 2007.
https://doi.org/10.1088/0022-3727/40/7/052

J. de Urquijo, A. Mitrani, G. Ruíz-Vargas, and E. Basurto, Limiting field strength and electron swarm coefficients of the CF3I-SF6 gas mixture, J. Phys. D. Appl. Phys., vol. 44, no. 34, Art. 342001, 2011.
https://doi.org/10.1088/0022-3727/44/34/342001

X. Li, H. Zhao, J. Wu, and S. Jia, Analysis of the insulation characteristics of CF3I mixtures with CF4, CO2, N2, O2 and air, J. Phys. D. Appl. Phys., vol. 46, no. 34, Art. 345203, 2013.
https://doi.org/10.1088/0022-3727/46/34/345203

S. Solomon, B. Burkholder, A. R. Ravishankara, and R. Garcia, Ozone depletion and global warming potentials of CF3I, J. Geophys. Res., vol. 99, no. 94, pp. 20929-20935, 1994.
https://doi.org/10.1029/94JD01833


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize