Open Access Open Access  Restricted Access Subscription or Fee Access

Optimization of PID Controller with Metaheuristic Algorithms for DC Motor Drives: Review


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v15i5.18688

Abstract


Direct Current (DC) motors are broadly used in various industrial applications such as robotics, automobiles, toys and for many other motoring purposes. This is attributable to their extraordinary flexibility, durability and low implementation cost. It is essential to control the speed, position, torque and other variables of the DC motor to achieve the needed performance depending on the area of application. Many classical techniques have been used in the past to control the DC motor, however, such methods typically take a long time, particularly when used for complex nonlinear systems. The application of metaheuristic algorithms as a means of implementing Artificial Intelligence (AI) in this area has proven to be highly effective in overcoming these shortcomings. In recent decades, metaheuristic algorithms have become increasingly prevalent due to their tremendous success in addressing a number real-world optimization challenges in various fields of human activities extending from economic, pharmaceutical and industrial applications to intellectual applications. This review, therefore, presents the optimization of the PID controller with metaheuristic algorithms for controlling the DC motor drives. A short description for each algorithm is presented along with papers published in various renowned journals. For a robust review, the application of various forms of PID controller, as well as different types of DC motors are examined. Finally, the paper presents some open issues and future directions for research.
Copyright © 2020 Praise Worthy Prize - All rights reserved.

Keywords


PID Controller; Metaheuristic Algorithm; Computational Intelligence; Optimizing; Parameters; Classical Techniques

Full Text:

PDF


References


K. Shrivastava, A Review on Types of DC Motors and the Necessity of Starter for Its Speed Regulation, Int. J. Adv. Res. Comput. Commun. Eng., vol. 5, no. 4, pp. 61–63, 2016.

T. R. DilKumar and S. J. Mija, Design and performance evaluation of robust SMC schemes for speed control of DC motor, in Proceedings of 2014 IEEE International Conference on Advanced Communication, Control and Computing Technologies, ICACCCT 2014, Ramanathapuram, 2015, pp. 88–92.
https://doi.org/10.1109/icaccct.2014.7019235

A. A. A. Emhemed and R. Bin Mamat, Modelling and simulation for Industrial DC Motor using Intelligent control, in Procedia Engineering, 2012, vol. 41, pp. 420–425.
https://doi.org/10.1016/j.proeng.2012.07.193

W. Lan and Q. Zhou, Speed control of DC motor using composite nonlinear feedback control, in 2009 IEEE International Conference on Control and Automation, ICCA 2009, Christchurch, 2009, pp. 2160–2164.
https://doi.org/10.1109/icca.2009.5410341

M. M. Mehdi Nasri, Hossein Nezamabadi-pour, “A PSO-Based Optimum Design of PID Controller for a Linear Brushless DC Motor,” Int. J. Electr. Inf. Eng., vol. 1, pp. 179–183, 2007.

N. Tripathi, R. Singh, and R. Yadav, Analysis of Speed Control of DC Motor-A review study, Int. Res. J. Eng. Technol., vol. 2, no. 8, pp. 1616–1621, 2015.

M. A. H. Azman, J. M. Aris, Z. Hussain, A. A. A. Samat, and A. M. Nazelan, A comparative study of fuzzy logic controller and artificial neural network in speed control of separately excited DC motor, in Proceedings - 7th IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2017, Penang, 2017, pp. 336–341.
https://doi.org/10.1109/iccsce.2017.8284430

R. Namba, T. Yamamoto, and M. Kaneda, Robust PID controller and its application, in 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orleans, LA, USA, 1997, vol. 4, pp. 3636–3641.
https://doi.org/10.1109/icsmc.1997.633233

J. Chacón, H. Vargas, S. Dormido, and J. Sánchez, Experimental Study of Nonlinear PID Controllers in an Air Levitation System, IFAC-PapersOnLine, vol. 51, no. 4, pp. 304–309, Jan. 2018.
https://doi.org/10.1016/j.ifacol.2018.06.082

M. J. Mahmoodabadi, R. Abedzadeh Maafi, and M. Taherkhorsandi, An optimal adaptive robust PID controller subject to fuzzy rules and sliding modes for MIMO uncertain chaotic systems, Appl. Soft Comput. J., vol. 52, pp. 1191–1199, Mar. 2017.
https://doi.org/10.1016/j.asoc.2016.09.007

X. Zhou, C. Yang, and W. Gui, Nonlinear system identification and control using state transition algorithm, Appl. Math. Comput., vol. 226, pp. 169–179, 2014.

Manuaba, I., Priyadi, A., Hery P., M., Coordination Tuning PID-PSS and TCSC Based Model of Single Machine Infinite-Bus Using Combination Bacteria Foraging-Particle Swam Optimization Method, (2015) International Review of Electrical Engineering (IREE), 10 (6), pp. 787-794.
https://doi.org/10.15866/iree.v10i6.7330

Khodja, M., Larbes, C., Ramzan, N., Ibrahim, A., Implementation of Heuristical PID Tuning for Nonlinear System Control, (2019) International Review of Automatic Control (IREACO), 12 (2), pp. 108-114.
https://doi.org/10.15866/ireaco.v12i2.16791

Š. Bucz and A. Kozáková, Advanced Methods of PID Controller Tuning for Specified Performance, in PID Control for Industrial Processes, InTech, 2018, pp. 73–119.
https://doi.org/10.5772/intechopen.76069

A. Sungthong and W. Assawinchaichote, Particle Swam Optimization Based Optimal PID Parameters for Air Heater Temperature Control System, in Procedia Computer Science, 2016, vol. 86, pp. 108–111.
https://doi.org/10.1016/j.procs.2016.05.027

C. T. Chao, N. Sutarna, J. S. Chiou, and C. J. Wang, An optimal fuzzy PID controller design based on conventional PID control and nonlinear factors, Appl. Sci., vol. 9, no. 6, 2019.
https://doi.org/10.3390/app9061224

C. Sánchez-López, V. H. Carbajal-Gómez, M. A. Carrasco-Aguilar, and F. E. Morales-López, PID controller design based on memductor, AEU - Int. J. Electron. Commun., vol. 101, pp. 9–14, Mar. 2019.
https://doi.org/10.1016/j.aeue.2019.01.019

L. Chaib, A. Choucha, and S. Arif, Optimal design and tuning of novel fractional order PID power system stabilizer using a new metaheuristic Bat algorithm, Ain Shams Eng. J., vol. 8, pp. 113–125, 2017.
https://doi.org/10.1016/j.asej.2015.08.003

R. A. Krohling, J. P. Rey, R. A. Krohling, and J. P. Rey, Design of optimal disturbance rejection PID controllers using genetic algorithms, IEEE Transactions on Evolutionary Computation, vol. 5, no. 1. pp. 78–82, Feb-2001.
https://doi.org/10.1109/4235.910467

R. Babu and R. Swarnalath, Comparison of Different Tuning Methods for pH Neutralization in Textile Industry, J. Appl. Sci., vol. 17, no. 3, pp. 142–147, Feb. 2017.
https://doi.org/10.3923/jas.2017.142.147

S. M. H. Mousakazemi and N. Ayoobian, Robust tuned PID controller with PSO based on two-point kinetic model and adaptive disturbance rejection for a PWR-type reactor, Prog. Nucl. Energy, vol. 111, pp. 183–194, Mar. 2019.
https://doi.org/10.1016/j.pnucene.2018.11.003

B. Singh and S. Singh, Single-phase power factor controller topologies for permanent magnet brushless DC motor drives, IET Power Electron., vol. 3, no. 2, pp. 147–175, Mar. 2010.
https://doi.org/10.1049/iet-pel.2008.0313

J. Gao and Y. Hu, Direct self-control for BLDC motor drives based on three-dimensional coordinate system, IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2836–2844, Aug. 2010.
https://doi.org/10.1109/tie.2009.2036027

C. S. Joice, S. R. Paranjothi, and V. J. S. Kumar, Digital control strategy for four quadrant operation of three phase BLDC motor with load variations, IEEE Trans. Ind. Informatics, vol. 9, no. 2, pp. 974–982, May 2013.
https://doi.org/10.1109/tii.2012.2221721

K. Premkumar and B. V. Manikandan, Adaptive fuzzy logic speed controller for brushless DC motor, in Proceedings of 2013 International Conference on Power, Energy and Control, ICPEC 2013, Sri Rangalatchum Dindigul, 2013, pp. 290–295.
https://doi.org/10.1109/icpec.2013.6527668

A. Tepljakov, B. B. Alagoz, C. Yeroglu, E. Gonzalez, S. H. HosseinNia, and E. Petlenkov, FOPID Controllers and Their Industrial Applications: A Survey of Recent Results 1, IFAC-PapersOnLine, vol. 51, no. 4, pp. 25–30, Jan. 2018.
https://doi.org/10.1016/j.ifacol.2018.06.014

D. Xue, C. Zhao, and Y. Q. Chen, Fractional order PID control of A DC-motor with elastic shaft: A case study, in Proceedings of the American Control Conference, 2006, vol. 2006, pp. 3182–3187.
https://doi.org/10.1109/acc.2006.1657207

Y. Luo and Y. Chen, Stabilizing and robust fractional order PI controller synthesis for first order plus time delay systems, in Automatica, 2012, vol. 48, no. 9, pp. 2159–2167.
https://doi.org/10.1016/j.automatica.2012.05.072

M. Cech and M. Schlegel, Computing PID tuning regions based on fractional-order model set, in IFAC Proceedings Volumes (IFAC-PapersOnline), 2012, vol. 2, no. PART 1, pp. 661–666.
https://doi.org/10.3182/20120328-3-it-3014.00112

J. Rajpurohit, T. Kumar Sharma, and A. Abraham, Glossary of Metaheuristic Algorithms, Int. J. Comput. Inf. Syst. Ind. Manag. Appl., vol. 9, pp. 181–205, 2017.

V. Ho-Huu, T. Nguyen-Thoi, M. H. Nguyen-Thoi, and L. Le-Anh, An improved constrained differential evolution using discrete variables (D-ICDE) for layout optimization of truss structures, Expert Syst. Appl., vol. 42, no. 20, pp. 7057–7069, Jun. 2015.
https://doi.org/10.1016/j.eswa.2015.04.072

A. Kumar and S. Bawa, A comparative review of meta-heuristic approaches to optimize the SLA violation costs for dynamic execution of cloud services, Soft Comput., vol. 24, pp. 3909–3922, 2019.
https://doi.org/10.1007/s00500-019-04155-4

G. Dhiman and V. Kumar, Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications, Adv. Eng. Softw., vol. 114, pp. 48–70, Dec. 2017.
https://doi.org/10.1016/j.advengsoft.2017.05.014

A. Darwish, Bio-inspired computing: Algorithms review, deep analysis, and the scope of applications, Futur. Comput. Informatics J., vol. 3, no. 2, pp. 231–246, Dec. 2018.
https://doi.org/10.1016/j.fcij.2018.06.001

H. Chiroma, A. Y. Gital, N. Rana, S. M. Abdulhamid, A. N. Muhammad, A. Y. Umar, and A. I. Abubakar, Nature Inspired Meta-heuristic Algorithms for Deep Learning: Recent Progress and Novel Perspective, in Advances in Intelligent Systems and Computing, 2020, vol. 943, pp. 59–70.
https://doi.org/10.1007/978-3-030-17795-9_5

X. S. Yang, S. Fong, X. He, S. Deb, and Y. Zhao, Swarm Intelligence: Today and Tomorrow, in Proceedings - 2016 3rd International Conference on Soft Computing and Machine Intelligence, ISCMI 2016, Dubai, 2017, pp. 219–223.
https://doi.org/10.1109/iscmi.2016.34

H. Abedinpourshotorban, S. Mariyam Shamsuddin, Z. Beheshti, and D. N. A. Jawawi, Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm, Swarm Evol. Comput., vol. 26, pp. 8–22, Feb. 2016.
https://doi.org/10.1016/j.swevo.2015.07.002

A. Biswas, K. K. Mishra, S. Tiwari, and A. K. Misra, Physics-Inspired Optimization Algorithms: A Survey, J. Optim., vol. 2013, pp. 1–16, 2013.

C. K. Chow and S. Y. Yuen, An evolutionary algorithm that makes decision based on the entire previous search history, IEEE Trans. Evol. Comput., vol. 15, no. 6, pp. 741–769, Dec. 2011.
https://doi.org/10.1109/tevc.2010.2040180

M. N. Ab Wahab, S. Nefti-Meziani, and A. Atyabi, A comprehensive review of swarm optimization algorithms, PLoS One, vol. 10, no. 5, pp. 1–36, May 2015.
https://doi.org/10.1371/journal.pone.0122827

A. Chakraborty and A. K. Kar, Swarm intelligence: A review of algorithms, in Modeling and Optimization in Science and Technologies, vol. 10, Springer Verlag, 2017, pp. 475–494.

S. Das, A. Abraham, and A. Konar, Swarm intelligence algorithms in bioinformatics, Stud. Comput. Intell., vol. 94, pp. 113–147, 2008.
https://doi.org/10.1007/978-3-540-76803-6_4

X. S. Yang, Z. Cui, R. Xiao, A. H. Gandomi, and M. Karamanoglu, Swarm Intelligence and Bio-Inspired Computation. Hendon: Elsevier Inc., 2013.
https://doi.org/10.1016/b978-0-12-405163-8.00027-2

G. Dhiman and A. Kaur, Optimizing the Design of Airfoil and Optical Buffer Problems Using Spotted Hyena Optimizer, Designs, vol. 2, no. 3, p. 28, Aug. 2018.
https://doi.org/10.3390/designs2030028

E. Bonabeau, M. Dorigo, and G. Theraulaz, From Natural to Artificial Swarm Intelligence. New York: Oxford University Press, Inc., 1999.

R. Storn and K. Price, Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, J. Glob. Optim., vol. 11, no. 4, pp. 341–359, 1997.

J. H. Holland, C. Langton, S. W. Wilson, F. J. Varela, P. Bourgine, J. R. Koza, and A. B. Book, Genetic Programming Complex Adaptive Systems Genetic Programming On the Programming of Computers by Means of Natural Selection, MIT Press edition, London, 1992.
https://doi.org/10.1007/bf00175355

M. Kumar, M. Husian, N. Upreti, and D. Gupta, Genetic Algorithm: Review and Application, Int. J. Inf. Technol. Knowl. Manag., vol. 2, pp. 451–454, 2010.

M. M. Kamal, L. Mathew, and S. Chatterji, Speed control of brushless DC motor using intelligent controllers, in SCES 2014: Inspiring Engineering and Systems for Global Sustainability, 2014, pp. 1–5.
https://doi.org/10.1109/sces.2014.6880121

S. Tiwari, A. Bhatt, A. C. Unni, J. G. Singh, and W. Ongsakul, Control of DC Motor Using Genetic Algorithm Based PID Controller, in 2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE), 2019, pp. 1–6.
https://doi.org/10.23919/icue-gesd.2018.8635662

C. L. Lin, H. Y. Jan, and N. C. Shieh, GA-based multiobjective PID control for a linear brushless DC motor, IEEE/ASME Trans. Mechatronics, vol. 8, no. 1, pp. 56–65, 2003.
https://doi.org/10.1109/tmech.2003.809136

J. Xiu, L. Liu, Y. Che, and S. Wang, GA based PI control of BLDCM drive, in Proceedings of the 27th Chinese Control Conference, CCC, 2008, pp. 189–193.
https://doi.org/10.1109/chicc.2008.4605261

Z. H. Ming Yang, Lei Zhang, Weiping Zhao, Optimization of dc motor rotary speed controller based on the genetic algorithm - IEEE Conference Publication, World Autom. Congr. 2012, Puerto Vallarta, Mex., pp. 1–4, 2012.

V. Sankardoss and P. Geethanjali, Parameter estimation and speed control of a PMDC motor used in wheelchair, in Energy Procedia, 2017, vol. 117, pp. 345–352.
https://doi.org/10.1016/j.egypro.2017.05.142

A. A. M. Zahir, S. S. N. Alhady, W. A. F. W. Othman, and M. F. Ahmad, Genetic algorithm optimization of pid controller for brushed DC motor, in Lecture Notes in Mechanical Engineering, Pleiades Publishing, 2018, pp. 427–437.
https://doi.org/10.1007/978-981-10-8788-2_38

L. Zhang, X. Xu, C. Zhou, M. Ma, and Z. Yu, An Improved Differential Evolution Algorithm for Optimization Problems, Adv. Comput. Sci. Intell. Syst. Environ., vol. 104, pp. 233–238, 2011.

A. H. Syed and M. A. Abido, Differential evolution based intelligent control for speed regulation of a PMDC motor, in 2013 21st Mediterranean Conference on Control and Automation, MED 2013 - Conference Proceedings, 2013, pp. 1451–1456.
https://doi.org/10.1109/med.2013.6608912

L. Syafaah, Widianto, I. Pakaya, D. Suhardi, and M. Irfan, PID designs using DE and PSO algorithms for damping oscillations in a DC motor speed, in 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Yogyakarta, 2017, pp. 1–5.
https://doi.org/10.1109/eecsi.2017.8239138

A. Idir, M. Kidouche, Y. Bensafia, K. Khettab, and S. A. Tadjer, Speed control of DC motor using PID and FOPID controllers based on differential evolution and PSO, Int. J. Intell. Eng. Syst., vol. 11, no. 4, pp. 241–249, Aug. 2018.
https://doi.org/10.22266/ijies2018.0831.24

M. C. Bosco, J. J. Guedes, M. F. Castoldi, A. Goedtel, E. R. Pires Da Silva, and L. F. S. Buzachero, Estimation of parameters and tuning of a speed PI of permanent magnet DC motor using differential evolution, in 2017 IEEE International Electric Machines and Drives Conference (IEMDC), Miami, FL, 2017, pp. 1–6.
https://doi.org/10.1109/iemdc.2017.8002318

A. Rodriguez-Molina, M. G. Villarreal-Cervantes, and M. Aldape-Perez, Optimal Adaptive Control of a DC Motor Using Differential Evolution Variants, in 2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, CYBER 2017, Honolulu, HI, 2017, pp. 283–288.
https://doi.org/10.1109/cyber.2017.8446115

H. Jigang, F. Hui, and W. Jie, A PI controller optimized with modified differential evolution algorithm for speed control of BLDC motor, Automatika, vol. 60, no. 2, pp. 135–148, Apr. 2019.
https://doi.org/10.1080/00051144.2019.1596014

S. Das, S. S. Mullick, and P. N. Suganthan, Recent advances in differential evolution-An updated survey, Swarm Evol. Comput., vol. 27, pp. 1–30, Apr. 2016.
https://doi.org/10.1016/j.swevo.2016.01.004

H. Ma, D. Simon, P. Siarry, Z. Yang, and M. Fei, Biogeography-Based Optimization: A 10-Year Review, IEEE Trans. Emerg. Top. Comput. Intell., vol. 1, no. 5, pp. 391–407, Sep. 2017.
https://doi.org/10.1109/tetci.2017.2739124

H. Mo and L. Xu, Biogeography optimization algorithm for DC motor PID control, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2015, vol. 9140, pp. 385–394.
https://doi.org/10.1007/978-3-319-20466-6_41

S. Waley Shneen, BBO_PI Controller for DC Motor, Int. Res. J. Adv. Eng. Sci., vol. 4, no. 1, pp. 271–274, 2019.

N. H. Awad, M. Z. Ali, P. N. Suganthan, and E. Jaser, Differential evolution with stochastic fractal search algorithm for global numerical optimization, in 2016 IEEE Congress on Evolutionary Computation, CEC 2016, Vancouver, BC, 2016, pp. 3154–3161.
https://doi.org/10.1109/cec.2016.7744188

I. Khanam and G. Parmar, Application of SFS algorithm in control of DC motor and comparative analysis, in 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON), Mathura, 2018, pp. 256–261.
https://doi.org/10.1109/upcon.2017.8251057

E. Çelik and H. Gör, Enhanced speed control of a DC servo system using PI + DF controller tuned by stochastic fractal search technique, J. Franklin Inst., vol. 356, no. 3, pp. 1333–1359, Feb. 2019.
https://doi.org/10.1016/j.jfranklin.2018.11.020

R. Rao, Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems, Int. J. Ind. Eng. Comput., vol. 7, no. 1, pp. 19–34, 2016.
https://doi.org/10.5267/j.ijiec.2015.8.004

H. M. Pandey, Jaya a novel optimization algorithm: What, how and why?, in 2016 6th International Conference - Cloud System and Big Data Engineering (Confluence), Noida, 2016, pp. 728–730.
https://doi.org/10.1109/confluence.2016.7508215

R. K. Achanta and V. K. Pamula, DC motor speed control using PID controller tuned by jaya optimization algorithm, in IEEE International Conference on Power, Control, Signals and Instrumentation Engineering, ICPCSI 2017, Chennai, 2018, pp. 983-987.
https://doi.org/10.1109/icpcsi.2017.8391856

E. Atashpaz-Gargari and C. Lucas, Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition, in 2007 IEEE Congress on Evolutionary Computation, CEC 2007, Singapore, 2007, pp. 4661–4667.
https://doi.org/10.1109/cec.2007.4425083

S. L. Ghalehpardaz and M. Shafiee, Speed control of DC motor using imperialist competitive algorithm based on PI-like FLC, in Proceedings - CIMSim 2011: 3rd International Conference on Computational Intelligence, Modelling and Simulation, Langkawi, 2011, pp. 28–33.
https://doi.org/10.1109/cimsim.2011.15

A. Afra, S. Aidin, and G. Jafar, Position Control of DC Motor Using Imperialist Competitive Algorithm Based PID Controller, in First National Conference on Advances in Computer Science and Information Retrieval Approaches, Iran, 2013, pp. 1–5.
M. A. Sharifi and H. Mojallali, Multi-Objective Modified Imperialist Competitive Algorithm for Brushless DC Motor Optimization, IETE J. Res., vol. 65, no. 1, pp. 96–103, Jan. 2019.
https://doi.org/10.1080/03772063.2017.1391130

D. B. Fogel, An Overview of Evolutionary Programming, in Evolutionary Algorithms. The IMA Volumes in Mathematics and its Applications, New York, NY: Springer, 1999, pp. 89–109.
https://doi.org/10.1007/978-1-4612-1542-4_5

L. L. Lai and J. T. Ma, Application of evolutionary programming to reactive power planning-comparison with nonlinear programming approach, IEEE Power Eng. Rev., vol. 17, no. 2, p. 56, 1997.
https://doi.org/10.1109/59.574940

G. H. Chang, Y. F. Li, and Q. Gang, Intelligent controller design for PM DC motor position control using evolutionary programming, in 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering, Wuhan, 2011, pp. 37–40.
https://doi.org/10.1109/ccieng.2011.6007951

T. Bäck, Evolutionary algorithms in theory and practice : evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, 1996.
https://doi.org/10.1108/k.1998.27.8.979.4

S. M. Anthony Brabazon, Michael O’Neill, Evolution strategies and evolutionary programming, in Natural Computing Series, vol. 28, Springer Verlag, 2015, pp. 73–82.
https://doi.org/10.1007/978-3-662-43631-8_5

Chun-Liang Lin and Horn-Yong Jan, Evolutionarily multiobjective PID control for linear brushless DC motors, in IEEE 2002 28th Annual Conference of the Industrial Electronics Society. IECON 02, Sevilla, 2002, vol. 3, pp. 2033–2038.
https://doi.org/10.1109/iecon.2002.1185285

N. Thomas and P. Poongodi, Position Control of DC Motor Using Genetic Algorithm Based PID Controller, Proc. World Congr. Eng., vol. 2, pp. 1–5, 2009.

U. Ansari, S. Alam, and S. M. U. N. Jafri, Modeling and control of three phase BLDC motor using PID with genetic algorithm, in 2011 UkSim 13th International Conference on Computer Modelling and Simulation, Cambridge, 2011, pp. 189–194.
https://doi.org/10.1109/uksim.2011.44

S. Srikanth and G. Chandra, Modeling and PID control of the brushless DC motor with the help of Genetic Algorithm, in IEEE-International Conference On Advances In Engineering, Science And Management (ICAESM -2012), Nagapattinam, Tamil Nadu, 2012, pp. 639–644.

G. G. Rigatos, Adaptive fuzzy control of DC motors using state and output feedback, Electr. Power Syst. Res., vol. 79, no. 11, pp. 1579–1592, Nov. 2009.
https://doi.org/10.1016/j.epsr.2009.06.007

J. Jing, Y. Wang, and Y. Huang, The fuzzy-PID control of brushless DC motor, in 2016 IEEE International Conference on Mechatronics and Automation, IEEE ICMA 2016, Harbin, 2016, pp. 1440–1444.
https://doi.org/10.1109/icma.2016.7558775

J. J. Gude and E. Kahoraho, Modified Ziegler-Nichols method for fractional PI controllers, in Proceedings of the 15th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2010, Bilbao, 2010, pp. 1–5.
https://doi.org/10.1109/etfa.2010.5641074

N. Yadaiah and S. Malladi, An optimized relation between Ti and Td in Modified Ziegler Nichols PID controller tuning, in Proceedings of the IEEE International Conference on Control Applications, Hyderabad, 2013, pp. 1275–1280.
https://doi.org/10.1109/cca.2013.6662928

E. Pruna, E. R. Sasig, and S. Mullo, PI and PID controller tuning tool based on the lambda method, in 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, (CHILECON) - Proceedings, Pucon, 2017, pp. 1–6.
https://doi.org/10.1109/chilecon.2017.8229616

M. Z. F. B. M. Zawawi, I. Elamvazuthi, A. B. A. Aziz, and S. A. Daud, Comparison of PID and fuzzy logic controller for DC servo motor in the development of lower extremity exoskeleton for rehabilitation, in 2017 IEEE 3rd International Symposium in Robotics and Manufacturing Automation, (ROMA), Kuala Lumpur, 2017, pp. 1–6.
https://doi.org/10.1109/roma.2017.8231822

A. A. Hassan, N. K. Al-Shamaa, and K. K. Abdalla, Comparative Study for DC Motor Speed Control Using PID Controller, Int. J. Eng. Technol., vol. 9, no. 6, pp. 4181–4192, Dec. 2017.
https://doi.org/10.21817/ijet/2017/v9i6/170906069

A. Giwa and S. O. Giwa, Dynamics and Tyreus-Luyben Tuned Control of a Fatty Acid Methyl Ester Reactive Distillation Process, Int. J. Eng. Res. Gen. Sci., vol. 3, no. 5.

M. Shamsuzzoha, IMC based robust PID controller tuning for disturbance rejection, J. Cent. South Univ., vol. 23, no. 3, pp. 581–597, Mar. 2016.
https://doi.org/10.1007/s11771-016-3105-1

M. N. Ab Malek and M. S. Mohamed Ali, Evolutionary tuning method for PID controller parameters of a cruise control system using metamodeling, Modelling and Simulation in Engineering, vol. 2009. pp. 1–8, 2010.
https://doi.org/10.1155/2009/234529

A. R. A. Rahman, A. R. A. Rahim, and A. Memari, Metaheuristic Algorithms: Guidelines for Implementation, J. Soft Comput. Decis. Support Syst., vol. 4, no. 6, pp. 1–6, 2017.

C. Blum and A. Roli, Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison, ACM Computing Surveys, vol. 35, no. 3. pp. 268–308, Sep-2003.
https://doi.org/10.1145/937503.937505

E. G. Talbi, A taxonomy of hybrid metaheuristics, J. Heuristics, vol. 8, no. 5, pp. 541–564, Sep. 2002.

Z. Wu, D. Li, Y. Xue, T. He, and S. Zheng, Tuning for Fractional Order PID Controller based on Probabilistic Robustness, IFAC-PapersOnLine, vol. 51, no. 4, pp. 675–680, Jan. 2018.
https://doi.org/10.1016/j.ifacol.2018.06.179

S. Ghosal, R. Darbar, B. Neogi, A. Das, and D. N. Tibarewala, Application of Swarm Intelligence Computation Techniques in PID Controller Tuning: A Review, in International Conference on Information Systems Design and Intelligent Applications 2012 (INDIA 2012), Visakhapatnam, India, 2012, pp. 195–208.
https://doi.org/10.1007/978-3-642-27443-5_23

S. E. De Leon-Aldaco, H. Calleja, and J. Aguayo Alquicira, Metaheuristic Optimization Methods Applied to Power Converters: A Review, IEEE Trans. Power Electron., vol. 30, no. 12, pp. 6791–6803, Dec. 2015.
https://doi.org/10.1109/tpel.2015.2397311

V. Singh and V. K. Garg, Tuning of PID Controller for Speed Control of DC Motor Using Soft Computing Techniques-A Review, Int. J. Appl. Eng. Res., vol. 9, no. 9, pp. 1141–1148, 2014.

A. Dineva, A. Mosavi, S. F. Ardabili, I. Vajda, S. Shamshirband, T. Rabczuk, and K.-W. Chau, Review of Soft Computing Models in Design and Control of Rotating Electrical Machines, Energies, vol. 12, no. 6, pp. 1–29, 2019.
https://doi.org/10.3390/en12061049

R. Goswami and D. Joshi, Performance Review of Fuzzy Logic Based Controllers Employed in Brushless DC Motor, in Procedia Computer Science, 2018, vol. 132, pp. 623–631.
https://doi.org/10.1016/j.procs.2018.05.061

H. Yazgan, F. Yener, S. Soysal, and A. Gür, Comparison Performances of PSO and GA to Tuning PID Controller for the DC Motor, Sak. Univ. J. Sci., vol. 23, no. 2, pp. 162–174, Apr. 2019.
https://doi.org/10.16984/saufenbilder.376464

M. M. Sabir and J. A. Khan, Optimal Design of PID Controller for the Speed Control of DC Motor by Using Metaheuristic Techniques, Adv. Artif. Neural Syst., vol. 2014, pp. 1–8, 2014.
https://doi.org/10.1155/2014/126317

A. Kharola, P. Patil, S. Raiwani, and D. Rajput, A comparison study for control and stabilisation of inverted pendulum on inclined surface (IPIS) using PID and fuzzy controllers, Perspect. Sci., vol. 8, pp. 187–190, Sep. 2016.
https://doi.org/10.1016/j.pisc.2016.03.016

E. Gowthaman, V. Vinodhini, M. Y. Hussain, S. K. Dhinakaran, and T. Sabarinathan, Speed Control of Permanent Magnet Brushless DC Motor Using Hybrid Fuzzy Proportional plus Integral plus Derivative Controller, Energy Procedia, vol. 117, pp. 1101–1108, Jun. 2017.
https://doi.org/10.1016/j.egypro.2017.05.234

B. Nagaraj and N. Murugananth, A comparative study of PID controller thning using GA, EP, PSO and ACO, in 2010 IEEE International Conference on Communication Control and Computing Technologies, ICCCCT 2010, Ramanathapuram, 2010, pp. 305–313.
https://doi.org/10.1109/icccct.2010.5670571

A. David O and O. Stephen, Poultry House Temperature Control Using Fuzzy-PID Controller, Int. J. Eng. Trends Technol., vol. 11, no. 6, pp. 310–314, May 2014.
https://doi.org/10.14445/22315381/ijett-v11p259

H. Huang, H. Qin, Z. Hao, and A. Lim, Example-based learning particle swarm optimization for continuous optimization, Inf. Sci. (Ny)., vol. 182, no. 1, pp. 125–138, Jan. 2012.
https://doi.org/10.1016/j.ins.2010.10.018

I. Podlubny, Fractional-order systems and PIλDμ-controllers, IEEE Trans. Automat. Contr., vol. 44, no. 1, pp. 208–214, 1999.
https://doi.org/10.1109/9.739144

A. Tepljakov, B. B. Alagoz, C. Yeroglu, E. Gonzalez, S. H. HosseinNia, and E. Petlenkov, FOPID Controllers and Their Industrial Applications: A Survey of Recent Results 1, IFAC-PapersOnLine, vol. 51, no. 4, pp. 25–30, Jan. 2018.
https://doi.org/10.1016/j.ifacol.2018.06.014

D. Xue, C. Zhao, and Y. Q. Chen, Fractional order PID control of A DC-motor with elastic shaft: A case study, in Proceedings of the American Control Conference, 2006, vol. 2006, pp. 3182–3187.
https://doi.org/10.1109/acc.2006.1657207

Y. Luo and Y. Chen, Stabilizing and robust fractional order PI controller synthesis for first order plus time delay systems, in Automatica, 2012, vol. 48, no. 9, pp. 2159–2167.
https://doi.org/10.1016/j.automatica.2012.05.072

M. Cech and M. Schlegel, Computing PID tuning regions based on fractional-order model set, in IFAC Proceedings Volumes (IFAC-PapersOnline), 2012, vol. 2, no. PART 1, pp. 661–666.
https://doi.org/10.3182/20120328-3-it-3014.00112

J. Rajpurohit, T. Kumar Sharma, and A. Abraham, Glossary of Metaheuristic Algorithms, Int. J. Comput. Inf. Syst. Ind. Manag. Appl., vol. 9, pp. 181–205, 2017.

V. Ho-Huu, T. Nguyen-Thoi, M. H. Nguyen-Thoi, and L. Le-Anh, An improved constrained differential evolution using discrete variables (D-ICDE) for layout optimization of truss structures, Expert Syst. Appl., vol. 42, no. 20, pp. 7057–7069, Jun. 2015.
https://doi.org/10.1016/j.eswa.2015.04.072

A. Kumar and S. Bawa, A comparative review of meta-heuristic approaches to optimize the SLA violation costs for dynamic execution of cloud services, Soft Comput., vol. 24, pp. 3909–3922, 2019.
https://doi.org/10.1007/s00500-019-04155-4

G. Dhiman and V. Kumar, Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications, Adv. Eng. Softw., vol. 114, pp. 48–70, Dec. 2017.
https://doi.org/10.1016/j.advengsoft.2017.05.014

A. Darwish, Bio-inspired computing: Algorithms review, deep analysis, and the scope of applications, Futur. Comput. Informatics J., vol. 3, no. 2, pp. 231–246, Dec. 2018.
https://doi.org/10.1016/j.fcij.2018.06.001

H. Chiroma, A. Y. Gital, N. Rana, S. M. Abdulhamid, A. N. Muhammad, A. Y. Umar, and A. I. Abubakar, Nature Inspired Meta-heuristic Algorithms for Deep Learning: Recent Progress and Novel Perspective, in Advances in Intelligent Systems and Computing, 2020, vol. 943, pp. 59–70.
https://doi.org/10.1007/978-3-030-17795-9_5

X. S. Yang, S. Fong, X. He, S. Deb, and Y. Zhao, Swarm Intelligence: Today and Tomorrow, in Proceedings - 2016 3rd International Conference on Soft Computing and Machine Intelligence, ISCMI 2016, Dubai, 2017, pp. 219–223.
https://doi.org/10.1109/iscmi.2016.34

H. Abedinpourshotorban, S. Mariyam Shamsuddin, Z. Beheshti, and D. N. A. Jawawi, Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm, Swarm Evol. Comput., vol. 26, pp. 8–22, Feb. 2016.
https://doi.org/10.1016/j.swevo.2015.07.002

A. Biswas, K. K. Mishra, S. Tiwari, and A. K. Misra, Physics-Inspired Optimization Algorithms: A Survey, J. Optim., vol. 2013, pp. 1–16, 2013.

C. K. Chow and S. Y. Yuen, An evolutionary algorithm that makes decision based on the entire previous search history, IEEE Trans. Evol. Comput., vol. 15, no. 6, pp. 741–769, Dec. 2011.
https://doi.org/10.1109/tevc.2010.2040180

M. N. Ab Wahab, S. Nefti-Meziani, and A. Atyabi, A comprehensive review of swarm optimization algorithms, PLoS One, vol. 10, no. 5, pp. 1–36, May 2015.
https://doi.org/10.1371/journal.pone.0122827

A. Chakraborty and A. K. Kar, Swarm intelligence: A review of algorithms, in Modeling and Optimization in Science and Technologies, vol. 10, Springer Verlag, 2017, pp. 475–494.

S. Das, A. Abraham, and A. Konar, Swarm intelligence algorithms in bioinformatics, Stud. Comput. Intell., vol. 94, pp. 113–147, 2008.
https://doi.org/10.1007/978-3-540-76803-6_4

X. S. Yang, Z. Cui, R. Xiao, A. H. Gandomi, and M. Karamanoglu, Swarm Intelligence and Bio-Inspired Computation. Hendon: Elsevier Inc., 2013.
https://doi.org/10.1016/b978-0-12-405163-8.00027-2

G. Dhiman and A. Kaur, Optimizing the Design of Airfoil and Optical Buffer Problems Using Spotted Hyena Optimizer, Designs, vol. 2, no. 3, p. 28, Aug. 2018.
https://doi.org/10.3390/designs2030028

E. Bonabeau, M. Dorigo, and G. Theraulaz, From Natural to Artificial Swarm Intelligence. New York: Oxford University Press, Inc., 1999.

R. Storn and K. Price, Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces,
J. Glob. Optim., vol. 11, no. 4, pp. 341–359, 1997.

J. H. Holland, C. Langton, S. W. Wilson, F. J. Varela, P. Bourgine, J. R. Koza, and A. B. Book, Genetic Programming Complex Adaptive Systems Genetic Programming On the Programming of Computers by Means of Natural Selection, MIT Press edition, London, 1992.
https://doi.org/10.1007/bf00175355

M. Kumar, M. Husian, N. Upreti, and D. Gupta, Genetic Algorithm: Review and Application, Int. J. Inf. Technol. Knowl. Manag., vol. 2, pp. 451–454, 2010.

M. M. Kamal, L. Mathew, and S. Chatterji, Speed control of brushless DC motor using intelligent controllers, in SCES 2014: Inspiring Engineering and Systems for Global Sustainability, 2014, pp. 1–5.
https://doi.org/10.1109/sces.2014.6880121

S. Tiwari, A. Bhatt, A. C. Unni, J. G. Singh, and W. Ongsakul, Control of DC Motor Using Genetic Algorithm Based PID Controller, in 2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE), 2019, pp. 1–6.
https://doi.org/10.23919/icue-gesd.2018.8635662

C. L. Lin, H. Y. Jan, and N. C. Shieh, GA-based multiobjective PID control for a linear brushless DC motor, IEEE/ASME Trans. Mechatronics, vol. 8, no. 1, pp. 56–65, 2003.
https://doi.org/10.1109/tmech.2003.809136

J. Xiu, L. Liu, Y. Che, and S. Wang, GA based PI control of BLDCM drive, in Proceedings of the 27th Chinese Control Conference, CCC, 2008, pp. 189–193.
https://doi.org/10.1109/chicc.2008.4605261

Z. H. Ming Yang, Lei Zhang, Weiping Zhao, Optimization of dc motor rotary speed controller based on the genetic algorithm - IEEE Conference Publication, World Autom. Congr. 2012, Puerto Vallarta, Mex., pp. 1–4, 2012.

V. Sankardoss and P. Geethanjali, Parameter estimation and speed control of a PMDC motor used in wheelchair, in Energy Procedia, 2017, vol. 117, pp. 345–352.
https://doi.org/10.1016/j.egypro.2017.05.142

A. A. M. Zahir, S. S. N. Alhady, W. A. F. W. Othman, and M. F. Ahmad, Genetic algorithm optimization of pid controller for brushed DC motor, in Lecture Notes in Mechanical Engineering, Pleiades Publishing, 2018, pp. 427–437.
https://doi.org/10.1007/978-981-10-8788-2_38

L. Zhang, X. Xu, C. Zhou, M. Ma, and Z. Yu, An Improved Differential Evolution Algorithm for Optimization Problems, Adv. Comput. Sci. Intell. Syst. Environ., vol. 104, pp. 233–238, 2011.

A. H. Syed and M. A. Abido, Differential evolution based intelligent control for speed regulation of a PMDC motor, in 2013 21st Mediterranean Conference on Control and Automation, MED 2013 - Conference Proceedings, 2013, pp. 1451–1456.
https://doi.org/10.1109/med.2013.6608912

L. Syafaah, Widianto, I. Pakaya, D. Suhardi, and M. Irfan, PID designs using DE and PSO algorithms for damping oscillations in a DC motor speed, in 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Yogyakarta, 2017, pp. 1–5.
https://doi.org/10.1109/eecsi.2017.8239138

A. Idir, M. Kidouche, Y. Bensafia, K. Khettab, and S. A. Tadjer, Speed control of DC motor using PID and FOPID controllers based on differential evolution and PSO, Int. J. Intell. Eng. Syst., vol. 11, no. 4, pp. 241–249, Aug. 2018.
https://doi.org/10.22266/ijies2018.0831.24

M. C. Bosco, J. J. Guedes, M. F. Castoldi, A. Goedtel, E. R. Pires Da Silva, and L. F. S. Buzachero, Estimation of parameters and tuning of a speed PI of permanent magnet DC motor using differential evolution, in 2017 IEEE International Electric Machines and Drives Conference (IEMDC), Miami, FL, 2017, pp. 1–6.
https://doi.org/10.1109/iemdc.2017.8002318

A. Rodriguez-Molina, M. G. Villarreal-Cervantes, and M. Aldape-Perez, Optimal Adaptive Control of a DC Motor Using Differential Evolution Variants, in 2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, CYBER 2017, Honolulu, HI, 2017, pp. 283–288.
https://doi.org/10.1109/cyber.2017.8446115

H. Jigang, F. Hui, and W. Jie, A PI controller optimized with modified differential evolution algorithm for speed control of BLDC motor, Automatika, vol. 60, no. 2, pp. 135–148, Apr. 2019.
https://doi.org/10.1080/00051144.2019.1596014

S. Das, S. S. Mullick, and P. N. Suganthan, Recent advances in differential evolution-An updated survey, Swarm Evol. Comput., vol. 27, pp. 1–30, Apr. 2016.
https://doi.org/10.1016/j.swevo.2016.01.004

H. Ma, D. Simon, P. Siarry, Z. Yang, and M. Fei, Biogeography-Based Optimization: A 10-Year Review, IEEE Trans. Emerg. Top. Comput. Intell., vol. 1, no. 5, pp. 391–407, Sep. 2017.
https://doi.org/10.1109/tetci.2017.2739124

H. Mo and L. Xu, Biogeography optimization algorithm for DC motor PID control, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2015, vol. 9140, pp. 385–394.
https://doi.org/10.1007/978-3-319-20466-6_41

S. Waley Shneen, BBO_PI Controller for DC Motor, Int. Res. J. Adv. Eng. Sci., vol. 4, no. 1, pp. 271–274, 2019.

N. H. Awad, M. Z. Ali, P. N. Suganthan, and E. Jaser, Differential evolution with stochastic fractal search algorithm for global numerical optimization, in 2016 IEEE Congress on Evolutionary Computation, CEC 2016, Vancouver, BC, 2016, pp. 3154–3161.
https://doi.org/10.1109/cec.2016.7744188

I. Khanam and G. Parmar, Application of SFS algorithm in control of DC motor and comparative analysis, in 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON), Mathura, 2018, pp. 256–261.
https://doi.org/10.1109/upcon.2017.8251057

E. Çelik and H. Gör, Enhanced speed control of a DC servo system using PI + DF controller tuned by stochastic fractal search technique, J. Franklin Inst., vol. 356, no. 3, pp. 1333–1359, Feb. 2019.
https://doi.org/10.1016/j.jfranklin.2018.11.020

R. Rao, Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems, Int. J. Ind. Eng. Comput., vol. 7, no. 1, pp. 19–34, 2016.
https://doi.org/10.5267/j.ijiec.2015.8.004

H. M. Pandey, Jaya a novel optimization algorithm: What, how and why?, in 2016 6th International Conference - Cloud System and Big Data Engineering (Confluence), Noida, 2016, pp. 728–730.
https://doi.org/10.1109/confluence.2016.7508215

R. K. Achanta and V. K. Pamula, DC motor speed control using PID controller tuned by jaya optimization algorithm, in IEEE International Conference on Power, Control, Signals and Instrumentation Engineering, ICPCSI 2017, Chennai, 2018, pp. 983-987.
https://doi.org/10.1109/icpcsi.2017.8391856

E. Atashpaz-Gargari and C. Lucas, Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition, in 2007 IEEE Congress on Evolutionary Computation, CEC 2007, Singapore, 2007, pp. 4661–4667.
https://doi.org/10.1109/cec.2007.4425083

S. L. Ghalehpardaz and M. Shafiee, Speed control of DC motor using imperialist competitive algorithm based on PI-like FLC, in Proceedings - CIMSim 2011: 3rd International Conference on Computational Intelligence, Modelling and Simulation, Langkawi, 2011, pp. 28–33.
https://doi.org/10.1109/cimsim.2011.15

A. Afra, S. Aidin, and G. Jafar, Position Control of DC Motor Using Imperialist Competitive Algorithm Based PID Controller, in First National Conference on Advances in Computer Science and Information Retrieval Approaches, Iran, 2013, pp. 1–5.

M. A. Sharifi and H. Mojallali, Multi-Objective Modified Imperialist Competitive Algorithm for Brushless DC Motor Optimization, IETE J. Res., vol. 65, no. 1, pp. 96–103, Jan. 2019.
https://doi.org/10.1080/03772063.2017.1391130

D. B. Fogel, An Overview of Evolutionary Programming, in Evolutionary Algorithms. The IMA Volumes in Mathematics and its Applications, New York, NY: Springer, 1999, pp. 89–109.
https://doi.org/10.1007/978-1-4612-1542-4_5

L. L. Lai and J. T. Ma, Application of evolutionary programming to reactive power planning-comparison with nonlinear programming approach, IEEE Power Eng. Rev., vol. 17, no. 2, p. 56, 1997.
https://doi.org/10.1109/59.574940

G. H. Chang, Y. F. Li, and Q. Gang, Intelligent controller design for PM DC motor position control using evolutionary programming, in 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering, Wuhan, 2011, pp. 37–40.
https://doi.org/10.1109/ccieng.2011.6007951

T. Bäck, Evolutionary algorithms in theory and practice : evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, 1996.
https://doi.org/10.1108/k.1998.27.8.979.4

S. M. Anthony Brabazon, Michael O’Neill, Evolution strategies and evolutionary programming, in Natural Computing Series, vol. 28, Springer Verlag, 2015, pp. 73–82.
https://doi.org/10.1007/978-3-662-43631-8_5

Chun-Liang Lin and Horn-Yong Jan, Evolutionarily multiobjective PID control for linear brushless DC motors, in IEEE 2002 28th Annual Conference of the Industrial Electronics Society. IECON 02, Sevilla, 2002, vol. 3, pp. 2033–2038.
https://doi.org/10.1109/iecon.2002.1185285

N. Thomas and P. Poongodi, Position Control of DC Motor Using Genetic Algorithm Based PID Controller, Proc. World Congr. Eng., vol. 2, pp. 1–5, 2009.

U. Ansari, S. Alam, and S. M. U. N. Jafri, Modeling and control of three phase BLDC motor using PID with genetic algorithm, in 2011 UkSim 13th International Conference on Computer Modelling and Simulation, Cambridge, 2011, pp. 189–194.
https://doi.org/10.1109/uksim.2011.44

S. Srikanth and G. Chandra, Modeling and PID control of the brushless DC motor with the help of Genetic Algorithm, in IEEE-International Conference On Advances In Engineering, Science And Management (ICAESM -2012), Nagapattinam, Tamil Nadu, 2012, pp. 639–644.

M. Jaiswal, M. Phadnis, and H. O. D. Ex, Speed Control of DC Motor Using Genetic Algorithm Based PID Controller, Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 3, no. 7, p. 2277, 2013.

D. K. Meena and S. Chahar, “Speed control of DC servo motor using genetic algorithm,” in IEEE International Conference on Information, Communication, Instrumentation and Control, ICICIC 2017, Indore, 2018, pp. 1–7.
https://doi.org/10.1109/icomicon.2017.8279122

M. J. Prabu, P. Poongodi, and K. Premkumar, Genetic Algorithm Tuned PID Controller for Rotor Position Control of BLDC Motor, World Appl. Sci. J., vol. 35, no. 2, pp. 199–207, 2017.

S. Kumar Suman and V. Kumar Giri, Genetic Algorithms Techniques Based Optimal PID Tuning For Speed Control of DC Motor, Am. J. Eng. Technol. Manag., vol. 1, no. 4, pp. 59–64, 2016.

G. A. M. Ismeal, K. Kyslan, and V. Fedák, CAD of cascade controllers for DC drives using genetic algorithm methods, in Procedia Engineering, 2014, vol. 96, pp. 182–189.
https://doi.org/10.1016/j.proeng.2014.12.140

S. Das, A. Biswas, S. Dasgupta, and A. Abraham, Bacterial foraging optimization algorithm: Theoretical foundations, analysis, and applications, Stud. Comput. Intell., vol. 203, pp. 23–55, 2009.
https://doi.org/10.1007/978-3-642-01085-9_2

S. Mirjalili, S. M. Mirjalili, and A. Lewis, Grey Wolf Optimizer, Adv. Eng. Softw., vol. 69, pp. 46–61, Mar. 2014.
https://doi.org/10.1016/j.advengsoft.2013.12.007

J. Timmis, A. Hone, T. Stibor, and E. Clark, Theoretical advances in artificial immune systems, Theor. Comput. Sci., vol. 403, pp. 11–32, 2008.
https://doi.org/10.1016/j.tcs.2008.02.011

A. H. Gandomi and A. H. Alavi, Krill herd: A new bio-inspired optimization algorithm, Commun. Nonlinear Sci. Numer. Simul., vol. 17, no. 12, pp. 4831–4845, Dec. 2012.
https://doi.org/10.1016/j.cnsns.2012.05.010

W. N. A. Abed, Speed control of DC motors using PID-controller tuned by bacterial foraging optimization technique, J. Sci. Eng. Res., vol. 1, no. 2, pp. 55–63, 2014.

R. E. Precup, A. L. Borza, M. B. Radac, and E. M. Petriu, Performance analysis of torque motor systems with PID controllers tuned by Bacterial Foraging Optimization algorithms, in 2014 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), Ottawa, ON, 2014, pp. 141–146.
https://doi.org/10.1109/civemsa.2014.6841453

A. S. Oshaba and E. S. Ali, Bacteria Foraging: A New Technique for Speed Control of DC Series Motor Supplied by Photovoltaic System, WSEAS Trans. Power Syst., vol. 9, pp. 185–195, 2014.

R. Alzuabi, International Journal of Current Engineering and Technology Optimally Tuned PID Controller of A DC Motor System using Bacterial Foraging Algorithm, 294| Int. J. Curr. Eng. Technol., vol. 8, no. 2, 2018.
https://doi.org/10.14741/ijcet/v.8.2.16

E. Daryabeigi and B. Mirzaeian Dehkordi, Smart bacterial foraging algorithm based controller for speed control of switched reluctance motor drives, Int. J. Electr. Power Energy Syst., vol. 62, pp. 364–373, 2014.
https://doi.org/10.1016/j.ijepes.2014.04.055

X. Diao, H. Zhu, and D. Zhang, Speed and Displacement Control System of Bearingless Brushless DC Motor Based on Improved Bacterial Foraging Algorithm, in MATEC Web of Conferences, 2016, vol. 75, pp. 1–5.
https://doi.org/10.1051/matecconf/20167507005

X. Zhou, Research on immune pathology in artificial immune system, in 2009 Chinese Control and Decision Conference, Guilin, 2009, pp. 1366–1370.
https://doi.org/10.1109/ccdc.2009.5192603

M. Gong, L. Zhang, L. Jiao, and S. Gou, Solving multiobjective clustering using an immune-inspired algorithm, in 2007 IEEE Congress on Evolutionary Computation, Singapore, 2007, pp. 15–22.
https://doi.org/10.1109/cec.2007.4424449

L. Xu and S. Jiang, Research of dynamics of DC speed regulator of flywheel double closed loop based on immune principle, in IEEE International Conference on Computer Science and Automation Engineering, Shanghai, 2011, vol. 2, pp. 259–263.
https://doi.org/10.1109/csae.2011.5952466

Q. Meng and T. Liu, Study on Immune PID control method of an in-wheel motor used in an electric car, in 2017 36th Chinese Control Conference (CCC), Dalian, 2017, pp. 9554–9559.
https://doi.org/10.23919/chicc.2017.8028882

M. Hadi and S. Zaid, Artificial Immune System based PID Tuning for DC Servo Speed Control, Int. J. Comput. Appl., vol. 155, no. 2, pp. 23–26, Dec. 2016.
https://doi.org/10.5120/ijca2016912265

M. A. Şen and M. Kalyoncu, Optimal Tuning of PID Controller Using Grey Wolf Optimizer Algorithm for Quadruped Robot, Balk. J. Electr. Comput. Eng., vol. 6, no. 1, pp. 29–35, Feb. 2018.
https://doi.org/10.17694/bajece.401992

A. Madadi and M. M. Motlagh, Optimal Control of DC motor using Grey Wolf Optimizer Algorithm, Tech. J. Eng. Appl. Sci., vol. 4, no. 4, pp. 373–379, 2014.

K. R. Das, D. Das, and J. Das, Optimal tuning of PID controller using GWO algorithm for speed control in DC motor, in International Conference on Soft Computing Techniques and Implementations, ICSCTI 2015, Faridabad, 2016, pp. 108–112.
https://doi.org/10.1109/icscti.2015.7489575

U. Bhatnagar and A. Gupta, Application of Grey Wolf Optimization in Optimal Control of DC Motor and Robustness Analysis, Ski. Res. J., vol. 8, no. 1, pp. 19–25, 2018.

D. Potnuru and A. S. L. V. Tummala, Grey wolf optimization-based improved closed-loop speed control for a BLDC motor drive, in Smart Innovation, Systems and Technologies, 2019, vol. 104, pp. 145–152.
https://doi.org/10.1007/978-981-13-1921-1_14

S. Saremi, S. Z. Mirjalili, and S. M. Mirjalili, Evolutionary population dynamics and grey wolf optimizer, Neural Comput. Appl., vol. 26, no. 5, pp. 1257–1263, Jul. 2015.
https://doi.org/10.1007/s00521-014-1806-7

A. Zhu, C. Xu, Z. Li, J. Wu, and Z. Liu, Hybridizing grey Wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC, J. Syst. Eng. Electron., vol. 26, no. 2, pp. 317–328, Apr. 2015.
https://doi.org/10.1109/jsee.2015.00037

J. Agarwal, G. Parmar, and R. Gupta, Comparative Analysis of PID Controller for Speed Control of DC motor with Intelligent Optimization Algorithms, in 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), Greater Noida (UP), India, 2019, pp. 273–277.
https://doi.org/10.1109/icacccn.2018.8748475

A. Ahmed, G. Parmar, and R. Gupta, Application of GWO in Design of Fractional Order PID Controller for Control of DC Motor and Robustness Analysis, in International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), Greater Noida (UP), 2019, pp. 646–651.
https://doi.org/10.1109/icacccn.2018.8748548

E. Cuevas, M. Cienfuegos, D. Zaldívar, and M. Pérez-Cisneros, A swarm optimization algorithm inspired in the behavior of the social-spider, Expert Syst. Appl., vol. 40, no. 16, pp. 6374–6384, 2013.
https://doi.org/10.1016/j.eswa.2013.05.041

Wan Amir Fuad Wajdi Othman, Social Spider Optimization (SSO) for Tuning PID Controller on DC Motors, Int. J. Res., vol. 5, no. 21, pp. 495–501, 2018.

K. R. Das, D. Das, and J. Das, Optimal tuning of PID controller using GWO algorithm for speed control in DC motor, in International Conference on Soft Computing Techniques and Implementations, ICSCTI 2015, 2016, pp. 108–112.
https://doi.org/10.1109/icscti.2015.7489575

W. I. Hameed, A. S. Kadhim, and A. A. K. Al-Thuwaynee, Field Weakening Control of a Separately Excited DC Motor Using Neural Network Optemized by Social Spider Algorithm, Engineering, vol. 08, no. 01, pp. 1–10, 2016.
https://doi.org/10.4236/eng.2016.81001

H. Zang, S. Zhang, and K. Hapeshi, A review of nature-inspired algorithms, J. Bionic Eng., vol. 7, no. SUPPL., Sep. 2010.

I. Fister, X.-S. Yang, I. Fister, J. Brest, and D. Fister, A Brief Review of Nature-Inspired Algorithms for Optimization, Elektroteh. Vestnik/Electrotechnical Rev., vol. 80, no. 3, pp. 116–122, Jul. 2013.
https://doi.org/10.1016/b978-0-12-405163-8.00004-1

K. C. Udaiyakumar and M. Chandrasekaran, Application of firefly algorithm in job shop scheduling problem for minimization of Makespan, in Procedia Engineering, 2014, vol. 97, pp. 1798–1807.
https://doi.org/10.1016/j.proeng.2014.12.333

R. Salgotra and U. Singh, Application of mutation operators to flower pollination algorithm, Expert Syst. Appl., vol. 79, pp. 112–129, Aug. 2017.
https://doi.org/10.


Refbacks




Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize