Open Access Open Access  Restricted Access Subscription or Fee Access

Effect of Eddy Current Loss on the Performance of Wind Turbine Induction Generator


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v17i4.21485

Abstract


Eddy current losses in wind power generation systems are dissipated as heat, which has a direct impact on the generator's efficiency. Due to the induction generator's poor heat dissipation from the rotor, eddy-current losses may generate substantial heating. A precise combination of the rotor architecture and the lamination dimensions should be employed when developing a wind power induction generator. In addition to material selection, lamination dimensions have a critical role in reducing core losses. The paper shows how to determine the generated power, losses, total energy efficiency, and capacity factor of a wind turbine generation system using a simple and accurate mathematical approach. The proposed work adds to the body of knowledge on eddy current losses by examining different steel lamination thicknesses and rotor heights for a wind power induction generator with a slip range of -0.05 to +0.25 and a B of 1.5 T and a frequency of 50 Hz. This work proposes an analytical tool for estimating the thickness and height of laminations (d and H). The optimal choice of d and H gives excellent efficiency and ensures that the thermal and slip are less than the maximum allowable limits, according to the results. The proposed method was used to examine a 2.2 MW, 50 Hz, 4-pole wind turbine induction generator. When d=0.1 mm and H=0.2 mm, the generator operates with a wide range of slip and is much below the thermal stress limit, resulting in a 96 percent efficiency.
Copyright © 2022 Praise Worthy Prize - All rights reserved.

Keywords


Eddy Current Losses; Induction Motors; Wind Turbine Generators; Efficiency of Wind Power Generator; Heat Dissipation; Induction Motor Design; Finite Element Method

Full Text:

PDF


References


N. Taran, V. Rallabandi, D. M. Ionel, G. Heins, and D. Patterson, A comparative study of methods for calculating ac winding losses in permanent magnet machines, 2019 IEEE Int. Electr. Mach. Drives Conf. IEMDC 2019, pp. 2265-2271, 2019.
https://doi.org/10.1109/IEMDC.2019.8785396

A. Fatemi, D. M. Ionel, N. A. O. Demerdash, D. A. Staton, R. Wrobel, and Y. C. Chong, A computationally efficient method for calculation of strand eddy current losses in electric machines, ECCE 2016 - IEEE Energy Convers. Congr. Expo. Proc., 2016.
https://doi.org/10.1109/ECCE.2016.7854667

E. Gundabattini, R. Kuppan, D. G. Solomon, A. Kalam, D. P. Kothari, and R. Abu Bakar, A review on methods of finding losses and cooling methods to increase efficiency of electric machines, Ain Shams Eng. J., vol. 12, no. 1, pp. 497-505, 2021.
https://doi.org/10.1016/j.asej.2020.08.014

Harir, M., Bendiabdellah, A., Induction Motor Faults Diagnosis when Considering Bars Skew and Saturation Effects, (2019) International Journal on Energy Conversion (IRECON), 7 (1), pp. 18-28.
https://doi.org/10.15866/irecon.v7i1.15549

K. Bitsi, D. Kowal, and R. R. Moghaddam, 3-D FEM investigation of eddy current losses in rotor lamination steel sheets, Proc. - 2018 23rd Int. Conf. Electr. Mach. ICEM 2018, pp. 1047-1053, 2018.
https://doi.org/10.1109/ICELMACH.2018.8507048

Dmitry Golovanov, Alessandro Galassini, Tommaso Transi , and Chris Gerada, Analytical Methodology for Eddy Current Loss Simulation in Armature Windings of Synchronous Electrical Machines with Permanent Magnets, IEEE Transactions on Industrial Electronics (Volume: 69, Issue: 10, Oct. 2022).
https://doi.org/10.1109/TIE.2022.3161818

M. Gołebiowski, L. Gołebiowski, A. Smolen, and D. Mazur, Direct consideration of eddy current losses in laminated magnetic cores in finite element method (FEM) calculations using the Laplace transform, Energies, vol. 13, no. 5, 2020.
https://doi.org/10.3390/en13051174

A. Bermúdez, D. Gómez, and P. Salgado, Eddy-current losses in laminated cores and the computation of an equivalent conductivity, IEEE Trans. Magn., vol. 44, no. 12, pp. 4730-4738, 2008.
https://doi.org/10.1109/TMAG.2008.2005118

E. Dlala, A. Belahcen, J. Pippuri, and A. Arkkio, Interdependence of hysteresis and eddy-current losses in laminated magnetic cores of electrical machines, IEEE Trans. Magn., vol. 46, no. 2, pp. 306-309, 2010.
https://doi.org/10.1109/TMAG.2009.2032930

Y. Kawase, T. Yamaguchi, and Y. Mizuno, 3-D Eddy Current Analysis in a Silicon Steel Sheet of Squirrel-Cage Induction Motor, IEEJ Trans. Ind. Appl., vol. 123, no. 4, pp. 323-329, 2003.
https://doi.org/10.1541/ieejias.123.323

M. Popescu and D. M. Ionel, A best-fit model of power losses in cold rolled motor lamination steel operating in a wide range of frequency and magnetization, 12th Bienn. IEEE Conf. Electromagn. F. Comput. CEFC 2006, vol. 43, no. 4, p. 65, 2006.
https://doi.org/10.1109/TMAG.2006.892291

Ismagilov, F., Zherebtsov, A., Vavilov, V., Sayakhov, I., Design and Experimental Investigation of BLDC Motor for Aircraft Electromechanical Actuator, (2020) International Review of Aerospace Engineering (IREASE), 13 (1), pp. 10-15.
https://doi.org/10.15866/irease.v13i1.17849

S. Xue, J. Feng, S. Guo, J. Peng, W. Q. Chu, and Z. Q. Zhu, A new iron loss model for temperature dependencies of hysteresis and eddy current losses in electrical machines, IEEE Trans. Magn., vol. 54, no. 1, 2018.
https://doi.org/10.1109/TMAG.2017.2755593

B. A. Nasir, An Accurate Iron Core Loss Model in Equivalent Circuit of Induction Machines, J. Energy, vol. 2020, pp. 1-10, 2020.
https://doi.org/10.1155/2020/7613737

Alger, Philip L. Induction Machines: Their Behavior and Uses. 2d ed. Completely rev. and updated, 3rd print. with additions. Chur, Switzerland: Gordon and Breach, 1995

A Gilbert A McCoy; John G Douglass; Motor Challenge Program (U.S.), Energy efficient electric motor selection handbook, vol. 110, no. 9. 1996.

Acar, Ç., Soygenc, O., Ergene, L., Increasing the Efficiency to IE4 Class for 5.5 kW Induction Motor Used in Industrial Applications, (2019) International Review of Electrical Engineering (IREE), 14 (1), pp. 67-78.
https://doi.org/10.15866/iree.v14i1.16307

A. Boglietti, A. Cavagnino, M. Lazzari, and M. Pastorelli, Induction motor efficiency measurements in accordance to IEEE 112-B, IEC 34-2 and JEC 37 international standards, IEMDC 2003 - IEEE Int. Electr. Mach. Drives Conf., vol. 3, no. 1, pp. 1599-1605, 2003.

H. Nam, K. H. Ha, J. J. Lee, J. P. Hong, and G. H. Kang, A study on iron loss analysis method considering the harmonics of the flux density waveform using iron loss curves tested on epstein samples, IEEE Trans. Magn., vol. 39, no. 3 I, pp. 1472-1475, 2003.
https://doi.org/10.1109/TMAG.2003.810198

W. Choi, S. Li, and B. Sarlioglu, Core loss estimation of high speed electric machines: An assessment, IECON Proc. (Industrial Electron. Conf., pp. 2691-2696, 2013.

Jelbaoui, Y., Lamiaà, E., Squirrel Cage Induction Motor Defects Diagnosis Using Lissajous Curve of an Auxiliary Winding Voltage, (2021) International Review on Modelling and Simulations (IREMOS), 14 (5), pp. 336-344.
https://doi.org/10.15866/iremos.v14i5.18905

K. Komeza and M. Dems, Field and circuit calculation of the core losses in the energy-saving small-size induction motor, 19th Int. Conf. Electr. Mach. ICEM 2010, 2010.
https://doi.org/10.1109/ICELMACH.2010.5608274

J. G. Zhu and V. S. Ramsden, Improved formulations for rotational core losses in rotating electrical machines, IEEE Trans. Magn., vol. 34, no. 4 PART 2, pp. 2234-2242, 1998.
https://doi.org/10.1109/20.703861

H. Domeki et al., Investigation of benchmark model for estimating iron loss in rotating machine, IEEE Trans. Magn., vol. 40, no. 2 II, pp. 794-797, 2004.
https://doi.org/10.1109/TMAG.2004.825442

A. S. Dalabeeh, A. ALMofleh, A. R. Alzyoud, and H. T. Ayman, Economical and reliable expansion alternative of composite power system under restructuring, Int. J. Electr. Comput. Eng., vol. 8, no. 6, pp. 4790-4799, 2018.
https://doi.org/10.11591/ijece.v8i6.pp4790-4799

Ali Dalabeeh, Optimizing the Compinations of Sites, Turbine Types, and Cells Types of a Hybrid Power System for remote Sites in jordan, Journal of Engineering and Applied Sciences, vol. 13, no. 16, pp. 6659-6667, 2018.

A. Anwar and A. S. K. Dalabeeh, "Approach to Jordanian Energy Resource Efficiency Management Using Energy Efficiency Practices, International Journal of Electrical and Electronic Science vol. 4, no. 6, pp. 47-53, 2017.

IRENA, Power sector planning in Arab countries (Incorporating variable renewables). 2019.

A. S. Khraiwish Dalabeeh, Techno-economic analysis of wind power generation for selected locations in Jordan, Renew. Energy, vol. 101, 2017.
https://doi.org/10.1016/j.renene.2016.10.003

Ali Salameh Khraiwish Dalabeeh, Wind Energy Using Doubly Fed Induction Generator, Int. J. Eng. Innov. Technol., vol. 3, no. 1, pp. 446-450, 2013.

J. A. Yasin, M. Alghamdi, F. H. Schulze, D. Provenzano, and A. Hassan, RES impact study in the Northern Region of KSA: First step toward energy diversification, 2017 Saudi Arab. Smart Grid Conf. SASG 2017, pp. 1-7, 2018.
https://doi.org/10.1109/SASG.2017.8356494

A. K. Dalabeeh and E. H. H. S. Al-Hajbi, Reliability worth assessment in composite power system planning and operation, Mod. Appl. Sci., vol. 8, no. 5, 2014.
https://doi.org/10.5539/mas.v8n5p45

E. R. Energy and M. P. Countries, FEMIP Evaluating Renewable Energy Manufacturing Potential in the Mediterranean Partner Countries, no. May, 2015.

W. Manfred Stiebler, Wind Energy-Systems for Electric Power Generation. 2008.

A. Ahlström, Simulating Dynamical Behaviour of Wind Power Structures of Wind Power Structures, K. Tek. Högskolan - R. Inst. Technol. Dep. Mech., vol. 11, 2002.

Y. Zou, Induction Generator in Wind Power Systems, Induction Mot. - Appl. Control Fault Diagnostics, pp. 3-46, 2015.
https://doi.org/10.5772/60958

A. Grauers, Efficiency of three wind energy generator systems, IEEE Trans. Energy Convers., vol. 11, no. 3, pp. 650-655, 1996.
https://doi.org/10.1109/60.537038

B. Renier, K. Hameyer, and R. Belmans, Comparison of standards for determining efficiency of three phase induction motors, IEEE Trans. Energy Convers., vol. 14, no. 3, pp. 512-517, 1999.
https://doi.org/10.1109/60.790906

A. H. Ghorashi, S. S. Murthy, B. P. Singh, and B. Bhim, Analysis of Wind Driven Grid Connected Induction Generators Under Unbalanced Grid Conditions, IEEE Power Eng. Rev., vol. 14, no. 6, p. 49, 1994.
https://doi.org/10.1109/MPER.1994.286579

F. Jiang, Z. Q. Bo, and L. Roumei, Performance of induction generator in parallel with an unbalanced three phase system, POWERCON 1998 - 1998 Int. Conf. Power Syst. Technol. Proc., vol. 2, pp. 1193-1197, 1998.

M. J. Islam, H. V. Khang, A. K. Repo, and A. Arkkio, Eddy-current loss and temperature rise in the form-wound stator winding of an inverter-fed cage induction motor, IEEE Trans. Magn., vol. 46, no. 8, pp. 3413-3416, 2010.
https://doi.org/10.1109/TMAG.2010.2044387

M. Popescu, D. M. Ionel, A. Boglietti, A. Cavagnino, C. Cossar, and M. I. McGilp, A general model for estimating the laminated steel losses under PWM voltage supply, IEEE Trans. Ind. Appl., vol. 46, no. 4, pp. 1389-1396, 2010.
https://doi.org/10.1109/TIA.2010.2049810

A. Boglietti, A. Cavagnino, D. M. Ionel, M. Popescu, D. A. Staton, and S. Vaschetto, A general model to predict the iron losses in inverter fed induction motors, 2009 IEEE Energy Convers. Congr. Expo. ECCE 2009, no. 5, pp. 1067-1074, 2009.
https://doi.org/10.1109/ECCE.2009.5316538

A. Cassat, C. Espanet, and N. Wavre, BLDC motor stator and rotor iron losses and thermal behavior based on lumped schemes and 3-D FEM analysis, IEEE Trans. Ind. Appl., vol. 39, no. 5, pp. 1314-1322, 2003.
https://doi.org/10.1109/TIA.2003.816480

N. A. Kohan and K. Abbaszadeh, Influence of nonsinusoidal flux waveform on transformer design methodology, PEDSTC 2010 - 1st Power Electron. Drive Syst. Technol. Conf., pp. 57-62, 2010.
https://doi.org/10.1109/PEDSTC.2010.5471855

D. Marcsa, Induction Motors Simulation by Finite Element Method and Different Potential Formulations with Motion Voltage Term, p. 84, 2008.

I. Postnikov, Theory and methods of calculations of asynchronous turbine generators, in Russian language, Теория и методы расчета асинхронных турбогенераторов, Book, Editor in Chief-Kiev, Scientific Home, pp. 176, 1977.

A. S. K. Dalabeeh, A. M. Anwar, T. M. Younes, A. Y. Al-Rawashdeh, and A. T. Hindi, Increasing the required slip range of wound induction generator in wind power systems, Bull. Electr. Eng. Informatics, vol. 9, no. 2, pp. 436-442, 2020.
https://doi.org/10.11591/eei.v9i2.1795

G. M. Masteres, Renewale and Efficient Electric Power Systems, Renew.Effic.Electr. Power Syst., 2004.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize