Open Access Open Access  Restricted Access Subscription or Fee Access

The Design of an Ultra-Low-Power 7.5 GHz LNA in 0.13µm CMOS Technology with Cascode and Common-Source Topology


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v15i4.18226

Abstract


An ultra-low-power, low-noise amplifier (LNA) at 7.5GHz in 0.13µm CMOS technology is proposed in this paper. New and precise calculation for input impedance is calculated and compared to other works. The main purpose of the design is to diminish the power consumption of the LNA by utilizing two different voltage supplies. All calculations and simulations are performed by Advanced Design System (ADS), MATLAB, and HSPICE with TSMC 0.13 µm CMOS process. Noise Figure (NF), the input matching (S11), gain (S21), the output matching (S22), IIP3, and power dissipation are 0.98, -25dB, 14.73dB, -19dB, -7, and 570µW respectively.
Copyright © 2020 Praise Worthy Prize - All rights reserved.

Keywords


0.13µm CMOS; Two Voltage Biasing; Ultra-Low-Power; Low Noise Amplifier

Full Text:

PDF


References


Fakharzadeh, M., M. R. Nezhad-Ahmadi, B. Biglarbegian, J. Ahmadi-Shokouh, and S. Safavi-Naeini, CMOS phased array transceiver technology for 60GHz wireless applications, IEEE Transactions on Antennas and Propagation, Vol. 58, 1093-1104, Apr. 2010.
https://doi.org/10.1109/tap.2010.2041140

Bozzola, S., D. Guermandi, F. Vecchi, M. Repossi, M. Pozzoni, A. Mazzanti, and F. Svelto, A sliding IF receiver for mm-wave WLANs in 65 nm CMOS, IEEE CICC'09, 669-672, 2009.
https://doi.org/10.1109/cicc.2009.5280754

Parsa, A. and B. Razavi, A 60 GHz CMOS receiver using a 30 GHz LO, ISSCC'08, 190-606, 2008.

Yu, Y. K., P. G. M. Baltus, A. de Graauw, E. van der Heijden, C. S. Vaucher, and A. H. M. van Roermund, A 60GHz phase shifter integrated with LNA and PA in 65 nm CMOS for phased array systems, IEEE Journal of Solid-State Circuits, Vol. 45, 1697-1709, Sept. 2010.
https://doi.org/10.1109/jssc.2010.2051861

Fritsche, D., G. Tretter, C. Carta, and F. Ellinger, Millimeter-wave low-noise amplifier design in 28-nm low-power digital CMOS, IEEE Transactions on Microwave Theory and Techniques, Vol. 63, 1910-1922, 2015.
https://doi.org/10.1109/tmtt.2015.2427794

Arbabian, A. and A. M. Niknejad, Design of a CMOS tapered cascaded multistage distributed amplifier, IEEE Transactions on Microwave Theory and Techniques, Vol. 57, 938-947, Apr. 2009.
https://doi.org/10.1109/tmtt.2009.2014433

Guo, B., J. Chen, L. Li, H. Jin, and G. Yang, A wideband noise-canceling CMOS LNA with enhanced linearity by using complementary nMOS and pMOS configurations, IEEE Journal of Solid-State Circuits, Vol. 52, 1331-1344, May 2017.
https://doi.org/10.1109/jssc.2017.2657598

Pan, Z., C. Qin, Z. Ye, and Y. Wang, A low power inductorless wideband LNA with Gm enhancement and noise cancellation, IEEE Microwave and Wireless Components Letters, Vol. 27, 58-60, 2017.
https://doi.org/10.1109/lmwc.2016.2629969

Kuo, M.-C., C.-N. Kuo, and T.-C. Chueh, Wideband LNA compatible for differential and singleended inputs, IEEE Microwave and Wireless Components Letters, Vol. 19, 482-484, Jul. 2009.
https://doi.org/10.1109/lmwc.2009.2022142

Kim, S. J., D. Lee, K. Y. Lee, and S. G. Lee, A 2.4-GHz super-regenerative transceiver with selectivity-improving dual Q-enhancement architecture and 102-μW all-digital FLL, IEEE Transactions on Microwave Theory and Techniques, Vol. 65, 3287-3298, Sep. 2017.
https://doi.org/10.1109/tmtt.2017.2664826

Cimino, M., Lapuyade, H., Deval, Y. et al. Design of a 0.9 V 2.45 GHz self-testable and reliability-enhanced CMOS LNA. IEEE Journal of Solid-State Circuits, 2008, vol. 43, no. 5, p. 1187 - 1194.
https://doi.org/10.1109/jssc.2008.920354

Chen, K. H., J. H. Lu, B. J. Chen, and S. L. Liu, An ultra-wide- band 0.4{10 GHz LNA in 0.18 ¹m CMOS, IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 54, No. 3, 217{221, Mar. 2007.
https://doi.org/10.1109/tcsii.2006.886880

Lai, M. T. and H. W. Tsao, Ultra-low-power cascaded CMOS LNA with positive feedback and bias optimization, IEEE Transactions on Microwave Theory and Techniques, Vol. 61, 1934-1945, 2013.
https://doi.org/10.1109/tmtt.2013.2256144

G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, 2nd ed. Upper Saddle River. Englewood Cliffs, NJ, USA: Prentice- Hall, 1997.

D. Linten, S. Thijs, M. I. Natarajan, P. Wambacq, W. Jeamsaksiri, J. Ramos, A.Mercha, S. Jenei, S. Donnay, and S. Decoutere, A 5-GHz fully integrated ESD-protected low-noise amplifier in 90-nm RF CMOS, IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1434-1442, Jul. 2005.
https://doi.org/10.1109/jssc.2005.847490

R. Brederlow, W. Weber, J. Sauerer, S. Donnay, P. Wambacq, and M. Vertregt, A mixed signal design roadmap, IEEE Design Test Comput., vol. 18, no. 6, pp. 34-46, Nov.-Dec. 2001.
https://doi.org/10.1109/54.970422

Wu, L., H. F. Leung, and H. C. Luong, Design and analysis of CMOS LNAs with transformer feedback for wideband input matching and noise cancellation, IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 64, 1626-1635, 2017.
https://doi.org/10.1109/tcsi.2017.2649844

Feng, G., C. C. Boon, F. Meng, X. Yi, K. Yang, C. Li, and H. C. Luong, Pole-converging Intra stage bandwidth extension technique for wideband amplifiers, IEEE Journal of Solid-State Circuits, Vol. 52, 769-780, 2017.
https://doi.org/10.1109/jssc.2016.2641459

Parveg, D., M. Varonen, D. Karaca, A. Vahdati, M. Kantanen, and K. A. I. Halonen, Design of a D-band CMOS amplifier utilizing coupled slow-wave coplanar waveguides, IEEE Transactions on Microwave Theory and Techniques, Vol. PP, 1-15, 2017.
https://doi.org/10.1109/tmtt.2017.2777976

Alican Çağlar., Mustafa Berke Yelten., A high linearity LNA using 180 nm CMOS technology for S-Band, Circuit Theory and Design (ECCTD), European conference, 2017, ISSN: 2474-9672.
https://doi.org/10.1109/ecctd.2017.8093230

A. A. Abdelhamid, M. T. Ozgun, and H. Dogan A fully integrated 2.4 dB NF capacitive cross coupling CG-LNA for LTE band, Analog Integrated Circuit and Signal Processing, Vol. 99, No. 1, pp. 159-166, 2019.
https://doi.org/10.1007/s10470-019-01399-w

M. W. Qadir, M. H. Memon, A. F. Mirza, S. W. Ali, and F. Lin, Multigain cascode technique for low power BLE ISM band 2.4GHz differential inductive source degeneration based LNA, in IEEE MTT-S International Wireless Symposium (IWS), Chengdu, China, pp. 1-4, 2018.
https://doi.org/10.1109/ieee-iws.2018.8400941

N. Yadav, M. J. Khan, J. Singh, A. Pandey, M. Kumar, V. Nath, and L.K. Singh, A 0.533 dB noise figure and 7 mW narrowband low noise amplifier for GPS application, Lecture Notes in Electrical Engineering, Springer, Vol. 453, pp 305-315, 2018
https://doi.org/10.1007/978-981-10-5565-2_27

A. A. Kumar, B. D. Sahoo, and A. Dutta, A wideband 2-5 GHz noise cancelling subthreshold low noise amplifier, IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 65, No. 7,pp. 834-838, 2017.
https://doi.org/10.1109/tcsii.2017.2719678

Y. Yu, K. Kang, Y. Fan, C. Zhao, H. Liu, Y. Wu, Y. L. Ban, and W. Y. Yin, Analysis and design of inductorless wideband low-noise amplifier with noise cancellation technique, IEEE Access, Vol. 5, pp. 9389-9397, 2017.
https://doi.org/10.1109/access.2017.2692765

Guo B, Chen J., A wideband common-gate CMOS LNA employing complementary MGTR technique ,Microwave Optical Technology Letters, 2017,59:1668-1671.
https://doi.org/10.1002/mop.30601

R. Kumar, F. A. Talukdar, A. Rajan, A. Devi, and R. Raja, Parameter optimization of 5.5 GHz low noise amplifier using multi objective Firefly Algorithm, Microsystem technologies J., vol. 44, no. 4, pp. 1-9, July. 2018.
https://doi.org/10.1007/s00542-018-4034-8

S. Mallick, R. Kar, D. Mandal, T. Dasgupta, and S. P. Ghoshal , Optimal design of 2.4 GHz CMOS LNA using PSO with aging leader and challenger (Book style). Advances in Computer Communication and Computational Sciences, 2018, pp. 291-303.
https://doi.org/10.1007/978-981-13-0341-8_27

Hemad Heidari Jobaneh., An Ultra-Low-Power 5 GHz LNA Design with Precise Calculation. American Journal of Networks and Communications. Vol. 8, No. 1, 2019, pp. 1-17.
https://doi.org/10.11648/j.ajnc.20190801.11

Hemad Heidari Jobaneh, An Ultra-Low-Power And Ultra-Low -Voltage 5 Ghz Low Noise Amplifier Design With Precise Calculation. Acta Electronica Malaysia, 3(2): 23-30. 2019
https://doi.org/10.26480/aem.02.2019.23.30


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize