Open Access Open Access  Restricted Access Subscription or Fee Access

On the Suitability of Compressive Sampling for LoRa Signals Classification


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v15i3.18129

Abstract


Sensor networks require even more reliable and power saving communication systems, especially as regards to Internet of Things paradigm. In this scenario, LoRa technology, based on an efficient Chirp Spread Spectrum modulation, is well tailored, granting both long range distance and low energy consumption in the communication link. Even though it is a recent solution, several instrumentation manufacturers are providing test facilities and setups to carry out reliable measurements on LoRa signals in both laboratory experiments and on-field applications. Unfortunately, these solutions are usually given as upgrade of expensive instruments operating in time and/or frequency domain. To overcome this drawback, the authors propose hereinafter an innovative approach based on compressive sampling to suitably reduce hardware requirements and dependably reconstruct the signal of interest from a reduced number of samples acquired in time domain. To assess its reliability and the potential attractiveness, the proposed methodology has been exploited to extract characteristic parameters from actual LoRa signals by mean of an experimental set-up, which takes care of their generation and acquisition. The obtained results highlight the promising performance of the proposed approach.
Copyright © 2020 Praise Worthy Prize - All rights reserved.

Keywords


LoRa Communications; Internet of Things; Compressive Sampling; Signal Reconstruction; Signal Classification

Full Text:

PDF


References


Wortmann, F.; Flüchter, K. Internet of things: technology and value added Bus. Inf. Syst. Eng 2015, 57, 211–214.
https://doi.org/10.1007/s12599-015-0383-3

Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Computer networks 2010, 54, 2787–2805.
https://doi.org/10.1016/j.comnet.2010.05.010

Bor, M.C.; Roedig, U.; Voigt, T.; Alonso, J.M. Do LoRa low-power wide-area networks scale? Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems. ACM, 2016, pp. 59–67.
https://doi.org/10.1145/2988287.2989163

Centenaro, M.; Vangelista, L.; Zanella, A.; Zorzi, M. Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios. IEEE Wireless Communications 2016, 23, 60–67.
https://doi.org/10.1109/mwc.2016.7721743

LoRa Alliance. LoRa Alliance Website. http://www.lora-alliance.org, 2017 (accessed March 2018).

Sanchez-Iborra, R.; Cano, M.D. State of the art in LP-WAN solutions for industrial IoT services. Sensors 2016, 16, 708.
https://doi.org/10.3390/s16050708

M. Carratù, M. Ferro, A. Pietrosanto and V. Paciello, "Smart Power Meter for the IoT," 2018 IEEE 16th International Conference on Industrial Informatics (INDIN), Porto, 2018, pp. 514-519.
https://doi.org/10.1109/indin.2018.8472018

Carratù, M., Ferro, M., Pietrosanto, A., & Sommella, P. (2017). Adopting smart metering RF networks for particulate matter distributed measurements. Paper presented at the 7th IMEKO TC19 Symposium on Environmental Instrumentation and Measurements, EnvIMEKO 2017, , 2017-August 50-55.

Semtech. Signal Concentrator Device. US US20160020932A1, 2016.

Keysight Technologies. The Internet of Things: Enabling Technologies and Solutions for Design and Test. Application Note 5992-1175EN, Keysight, https://www.keysight.com, 2017.

Rohde & Schwarz. Rohde & Schwarz supports LoRa product testing for development and production. Press Release, Rohde & Schwarz, https://www.rohde-schwarz.com, 2016.
https://doi.org/10.1007/s40567-013-0021-0

Tektronix. Wireless Connectivity Test. Application Note 37W-60960-0, Tektronix, http://www.tek.com,2017.

Schweiger, K.; Zimmermann, H. Low-Voltage Low-Power Highly Linear Down-Sampling Mixer in 65nm Digital CMOS Technology. 2008 11th IEEE Workshop on Design and Diagnostics of Electronic Circuits and Systems, 2008, pp. 1–4.
https://doi.org/10.1109/ddecs.2008.4538780

Angrisani, L., Capriglione, D., Cerro, G., Ferrigno, L., Miele, G., On employing a Savitzky-Golay filtering stage to improve performance of spectrum sensing in CR applications concerning VDSA approach (2016) Metrology and Measurement Systems, 23 (2), pp. 295-308.
https://doi.org/10.1515/mms-2016-0019

Capriglione, D., Cerro, G., Ferrigno, L., Miele, G., Analysis and implementation of a wavelet-based spectrum sensing method for low SNR scenarios, (2016) WoWMoM 2016 - 17th International Symposium on a World of Wireless, Mobile and Multimedia Networks.
https://doi.org/10.1109/wowmom.2016.7523585

Angrisani, L., Capriglione, D., Cerro, G., Ferrigno, L., Miele, G., Optimization and experimental characterization of novel measurement methods for wide-band spectrum sensing in cognitive radio applications, (2016) Measurement: Journal of the International Measurement Confederation, 94, pp. 585-601.
https://doi.org/10.1016/j.measurement.2016.08.036

M. Carratù, A. Pietrosanto, P. Sommella and V. Paciello, Semi-active suspension system for motorcycles: From the idea to the industrial product, 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Houston, TX, 2018, pp. 1-6.
https://doi.org/10.1109/i2mtc.2018.8409829

D. Capriglione, M. Carratù, A. Pietrosanto and P. Sommella, Real-time implementation of an IFD scheme for motorcycle sensors, 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Houston, TX, 2018, pp. 1-6.
https://doi.org/10.1109/i2mtc.2018.8409833

Angrisani, L.; Vadursi, M. On the optimal sampling of bandpass measurement signals through data acquisition systems. Measurement Science and Technology 2008, 19, 045102.
https://doi.org/10.1088/0957-0233/19/4/045102

Candès, E.J.; Wakin, M.B. An introduction to compressive sampling. IEEE signal processing magazine 2008, 25, 21–30.
https://doi.org/10.1109/msp.2007.914731

Haupt, J.; Castro, R.; Nowak, R.; Fudge, G.; Yeh, A. Compressive sampling for signal classification. Fortieth Asilomar Conference on Signals, Systems and Computers, 2006. ACSSC’06. IEEE, 2006, pp. 1430–1434.
https://doi.org/10.1109/acssc.2006.354994

Wimalajeewa, T.; Chen, H.; Varshney, P.K. Performance limits of compressive sensing-based signal classification. IEEE Transactions on Signal Processing 2012, 60, 2758–2770.
https://doi.org/10.1109/tsp.2012.2189859

Angrisani, L.; Bonavolontà, F.; D’Apuzzo, M.; Schiano Lo Moriello, R.; Vadursi, M. A compressive sampling-based method for power measurement of band-pass signals. Instrumentation and Measurement Technology Conference (I2MTC), 2013 IEEE International. IEEE, 2013, pp. 102–107.
https://doi.org/10.1109/i2mtc.2013.6555390

Angrisani, L.; Bonavolontà, F.; Liccardo, A.; Schiano Lo Moriello, R.; Ferrigno, L.; Laracca, M.; Miele, G. Multi-channel simultaneous data acquisition through a compressive sampling-based approach. Measurement 2014, 52, 156 – 172.
https://doi.org/10.1016/j.measurement.2014.02.031

Bonavolontà, F.; D’Apuzzo, M.; Liccardo, A.; Vadursi, M. New Approach Based on Compressive Sampling for Sample Rate Enhancement in DASs for Low-Cost Sensing Nodes. Sensors 2014, 14, 18915–18940.
https://doi.org/10.3390/s141018915

Bonavolontà, F.; D’Apuzzo, M.; Liccardo, A.; Miele, G. A compressed sampling-based method compliant with IEC 61000-4-30 for harmonic and interharmonic measurements. 20th IMEKO TC4 International Symposium and 18th International Workshop on ADC Modelling and Testing Research on Electric and Electronic Measurement for the Economic Upturn, 2014.
https://doi.org/10.1016/j.measurement.2015.08.022

De Vito, L.; Dobre, O.A. A compressive sampling-based method for classification and parameter estimation of FSK signals. Measurement 2017, 98, 439–444.
https://doi.org/10.1016/j.measurement.2015.12.038

Chang, K.; Jang, J.S.; Iliopoulos, C. Music Genre Classification via Compressive Sampling. 11th International Society for Music Information Retrieval Conference, ISMIR 2010, Utrecht, Netherlands, 2010, pp. 387–392.

Angrisani, L.; Arpaia, P.; Bonavolontà, F.; Conti, M.; Liccardo, A. LoRa protocol performance assessment in critical noise conditions. 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI), IEEE, 2017, pp. 1–5.
https://doi.org/10.1109/rtsi.2017.8065952

Angrisani, L.; Bonavolontà, F.; Liccardo, A.; Schiano Lo Moriello, R. On the Use of LoRa Technology for Logic Selectivity in MV Distribution Networks. Energies 2018, 11, 3079.
https://doi.org/10.3390/en11113079

Ruano Lin, E. LoRa protocol. Evaluations, limitations and practical test. Master’s thesis, Institut national polytechnique de Grenoble, 2016.

Haxhibeqiri, J.; De Poorter, E.; Moerman, I.; Hoebeke, J. A Survey of LoRaWAN for IoT: From Technology to Application. Sensors 2018, 18, 3995.
https://doi.org/10.3390/s18113995

Baraniuk, R.G. Compressive sensing [lecture notes]. IEEE signal processing magazine 2007, 24, 118–121.
https://doi.org/10.1109/msp.2007.4286571

Razavi, S.A.; Ollila, E.; Koivunen, V. Robust greedy algorithms for compressed sensing. 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), 2012, pp. 969–973.

Yu, G.; Zhou, Y. General linear chirplet transform. Mechanical Systems and Signal Processing 2016, 70, 958–973.
https://doi.org/10.1016/j.ymssp.2015.09.004

Mann, S.; Haykin, S. The chirplet transform: Physical considerations. IEEE Transactions on Signal Processing 1995, 43, 2745–2761.
https://doi.org/10.1109/78.482123

Peng, Z.; Meng, G.; Chu, F.; Lang, Z.; Zhang, W.; Yang, Y. Polynomial chirplet transform with application to instantaneous frequency estimation. IEEE Transactions on Instrumentation and Measurement 2011, 60, 3222–3229.
https://doi.org/10.1109/tim.2011.2124770

Hsiao, Y.H.; Chen, C.C. Over-atoms accumulation orthogonal matching pursuit reconstruction algorithm for fish recognition and identification. 2016 23rd International Conference onPattern Recognition (ICPR), IEEE, 2016, pp. 1071–1076.
https://doi.org/10.1109/icpr.2016.7899778

Tropp, J.A.; Gilbert, A.C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on information theory 2007, 53, 4655–4666.
https://doi.org/10.1109/tit.2007.909108

Needell, D.; Vershynin, R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. arXiv preprint arXiv:0712.1360 2007.
https://doi.org/10.1109/jstsp.2010.2042412

Dai, W.; Milenkovic, O. Subspace pursuit for compressive sensing signal reconstruction. IEEE transactions on Information Theory 2009, 55, 2230–2249.
https://doi.org/10.1109/tit.2009.2016006

Needell, D.; Tropp, J.A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Communications of the ACM 2010, 53, 93–100.
https://doi.org/10.1145/1859204.1859229

Blumensath, T.; Davies, M.E. Gradient pursuits. IEEE Transactions on Signal Processing 2008, 56, 2370–2382
https://doi.org/10.1109/tsp.2007.916124

Angrisani, L.; Schiano Lo Moriello, R. Estimating ultrasonic time-of-flight through quadrature demodulation. IEEE transactions on instrumentation and measurement 2006, 55, 54–62
https://doi.org/10.1109/tim.2005.861251

Angrisani, L.; D’Arco, M.; Schiano Lo Moriello, R.; Vadursi, M. On the use of the warblet transform for instantaneous frequency estimation. Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No. 04CH37510). IEEE, 2004, Vol. 2, pp. 935–940.
https://doi.org/10.1109/imtc.2004.1351216

George, G.; Oommen, R.M.; Shelly, S.; Philipose, S.S.; Varghese, A.M. A Survey on Various Median Filtering Techniques for Removal of Impulse Noise From Digital Image. 2018 Conference on Emerging Devices and Smart Systems (ICEDSS), 2018, pp. 235–238.
https://doi.org/10.1109/icedss.2018.8544273

L. Angrisani, D. Capriglione, G. Cerro, L. Ferrigno, G. Miele, “The effect of Savitzky-Golay smoothing filter on the performance of a vehicular dynamic spectrum access method”, in proc. of 20th IMEKO TC4 Symposium on Measurements of Electrical Quantities: Research on Electrical and Electronic Measurement for the Economic Upturn, Together with 18th TC4 International Workshop on ADC and DCA Modeling and Testing, IWADC 2014, pp. 1116-1121.
https://doi.org/10.21014/acta_imeko.v4i3.289

G. Betta, D. Capriglione, G. Cerro, L. Ferrigno and G. Miele, The effectiveness of Savitzky-Golay smoothing method for spectrum sensing in cognitive radios, 2015 XVIII AISEM Annual Conference, Trento, 2015, pp. 1-4.
https://doi.org/10.1109/aisem.2015.7066819

Vishaga, S.; Das, S.L. A survey on switching median filters for impulse noise removal. 2015 International Conference on Circuits, Power and Computing Technologies, 2015, pp.1–6.
https://doi.org/10.1109/iccpct.2015.7159470


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize