Open Access Open Access  Restricted Access Subscription or Fee Access

Review of the Application of Composite Materials in Electrical Machines

Flur Ismagilov(1), Nikita Uzhegov(2), Vyacheslav Vavilov(3), Ildus Sayakhov(4*)

(1) Ufa State Aviation Technical University (USATU), Ufa, Russian Federation
(2) Lappeenranta University of Technology (LUT), Finland
(3) Ufa State Aviation Technical University (USATU), Ufa, Russian Federation
(4) Ufa State Aviation Technical University (USATU), Ufa, Russian Federation
(*) Corresponding author



This paper describes typical composite materials that are already used or can be used in the components of electrical machines. In the presented review of composite materials, their main advantages and limitations are identified. Specific examples of the use of composite materials in electrical machines are given. This article also studies the feasibility and the fundamental possibility of creating an electrical machine for microturbines entirely composed of composite materials. For this purpose, electromagnetic and thermal analyses using finite element methods have been performed. According to the results of these analyses, a comparison of the characteristics of an electrical machine is made consisting of traditional materials and electrical machines partly or fully consisting of composite materials. As a result, proposals are formed on the prospects for the use of composite materials in electrical machines. The main contribution of this article in the field of design and creation of electrical machines is the synthesis of data on composite materials used in electrical machines, as well as the demonstration of the prospects of an electrical machine entirely composed of composite materials.
Copyright © 2020 Praise Worthy Prize - All rights reserved.


Composite Materials; Electrical Machines; Finite Element Methods

Full Text:



R. Funck. (2015). Composite materials in high efficient sleeve applications of electric machines. Circomp GmbH. Deutschland. [Online]. Available:

JBarta, J., Uzhegov, N., Ondrusek, C., Pyrhönen, J., High-Speed Electrical Machine Topology Selection for the 6kW, 120 000 rpm Helium Turbo-Circulator, (2016) International Review of Electrical Engineering (IREE), 11 (1), pp. 36-44.

Y. Liu, J. Ou, M. Schiefer, P. Breining, F. Grilli, M. Doppelbauer, Application of an Amorphous Core to an Ultra-high-speed Sleeve-free Interior Permanent-magnet Rotor, IEEE Trans. Ind. Electron., vol. 65 (11), pp. 8498 - 8509, Mar. 2018.

M. Lim, J. Kim, Y. Hwang, J. Hong, Design of an Ultra-High-Speed Permanent-Magnet Motor for an Electric Turbocharger Considering Speed Response Characteristics, IEEE/ASME Trans. on Mechatronics, vol. 22, no. 2, pp. 774-784, Apr.2017.

D. Gerada, A. Mebarki, N.L. Brown, C. Gerada, A. Cavagnino, A. Boglietti, High-Speed Electrical Machines: Technologies, Trends, and Developments, IEEE Trans. Ind. Electron., vol. 61, No. 6, pp.2946–2959, Jun. 2014.

S. S. Kim, D. G. Lee, Design of the hybrid composite journal bearing assembled by interference fit, Composite Structures, vol. 75 (1-4), pp. 222–230, Sep. 2006.

S. Koch, M. Peter, J. Fleischer, Lightweight design and manufacturing of composites for high-performance electric motors, in 1st CIRP Conf. on Composite Material Parts Manufacturing (CIRP-CCMPM), 2017, pp. 283–288.

M. Schiefer, M. Doppelbauer, Indirect slot cooling for high power density machines with concentrated winding, in Proc. IEEE Int. Electric Machines and Drives Conf. (IEMDC), 2015, pp. 1820–1825.

Z. Xu, A. Rocca, P. Arumugam, S. J. Pickering, C. Gerada, S. Bozhko, D. Gerada, H. Zhang, A semi-flooded cooling for a high speed machine: Concept, design and practice of an oil sleeve, in IECON 2017 - 43rd Annual Conf. of the IEEE Industrial Electronics Society, 2017, pp.8557-8562.

A. Tuysuz, F. Meyer, M. Steichen, C. Zwyssig, J.W. Kolar, Advanced Cooling Methods for High-Speed Electrical Machines, IEEE Trans. Ind. Appl., vol. 53 (3), pp. 2077-2087, May 2017.

Composite plain bearings, SKF. 2018. [Online]. Available:

K. Tanimoto, K. Kajihara, K. Yanai. (2000, March). Hybrid Ceramic Ball Bearings for Turbochargers. Presented at SAE 2000 World Congress. [Online].

Metal-Polymer Composite Plain Bearings, Schaeffler INA. 2018. [Online]. Available:

Vavilov, V., Ismagilov, F., Khayrullin, I., Gumerova, M., Application of Hybrid Magnetic Bearings in Aviation Starter-Generators, (2014) International Review of Electrical Engineering (IREE), 9 (3), pp. 506-510.

V. E. Vavilov, A. A. Gerasin, F. R. Ismagilov, I. Kh. Khairullin, Stability analysis of hybrid magnetic bearings, Journal of Computer and Systems Sciences International, vol. 53, no. 1, pp. 130-136, Jan. 2014.

Y. Guo, J. Zhu, P.A. Watterson, W. Wu, Comparative study of 3-d flux electrical machines with soft magnetic composite cores, IEEE Trans. Ind. Appl., vol. 39, no. 6, pp. 1696–1703, Nov. 2003.

C. Liu, J. Zhu, Y. Wang, G. Lei, Y. Guo, Design Considerations of PM Transverse Flux Machines With Soft Magnetic Composite Cores, IEEE Trans. Appl. Supercond., vol. 26, no. 4, pp. 1–5, Jun. 2016.

G. J. Zhu, D.G. Dorrell, Design and Analysis of a Claw Pole Permanent Magnet Motor With Molded Soft Magnetic Composite Core, IEEE Trans. Ind. Electron., vol. 45, no. 10, pp. 4582-4585, Sep. 2009.

A. Hamler, V. Gorican, B. Sustarsic, A. Sirc, The use of soft magnetic composite materials in synchronous electric motor, Journal of Magnetism and Magnetic Materials, vol. 304, no. 2, pp. e816-e819 2006.

A. Krings, A. Boglietti, A. Cavagnino, S. Sprague, Soft Magnetic Material Status and Trends in Electric Machines, IEEE Trans. Ind. Electron., vol. 64, no. 3, pp. 2405-2414, Mar. 2017.

A. Schoppa, P. Delarbre, Soft Magnetic Powder Composites and Potential Applications in Modern Electric Machines and Devices, IEEE Trans. Magn., vol. 50, no. 4, pp. 1-4, Apr. 2014.

H. Shokrollahi, K. Janghorban, Soft magnetic composite materials, Journal Of Materials Processing Technology, vol. 189, no. 1-3, pp. 1-12, Jul. 2007.

N. Ertugrul, R. Hasegawa, W.L.Soong, J. Gayler, S. Kloeden, S. Kahourzade, A Novel Tapered Rotating Electrical Machine Topology Utilizing Cut Amorphous Magnetic Material, IEEE Trans. Magn., vol. 51, no. 7, pp. 1-6, July 2015.

Z. Wang, Y. Enomoto, M. Ito, R. Masaki, S. Morinaga, H. Itabashi, S. Tanigawa, Development of a permanent magnet motor utilizing amorphous wound cores, IEEE Trans. Magn., vol. 46, no. 2, pp. 570–573, Feb. 2010.

Soft Magnetic Composites, Hoganas. 2018. [Online]. Available:

Magnetic materials, Metglas Inc. 2018. [Online]. Available:

Cold-rolled isotropic electrical-sheet steel. Specifications, GOST 21427.2-83, 1984.

F. Ismagilov, W. Tong, V. Vavilov, D. Gusakov, V. Ayguzina, High-speed Electrical Machine with Radial Magnetic Flux and Stator Core Made of Amorphous Magnetic Material. Technologies, Trends and Perspective of Development, Progress In Electromagnetics Research C, vol. 86, pp. 69–82, Jan. 2018.

Nicholas J. DeCristofaro, Dung A. Ngo, Richard L. Bye, Jr., Peter J. Stamatis, Gordon E. Fish, Amorphous metal stator for a radial-flux electric motor, U.S. Patent 6 960 860 B1, Jun. 18, 1998.

M. W. McPherson, A. D. Hirzel, Stator used in an electrical motor or generator with low loss magnetic material and method of manufacturing a stator, EP 2 652 860 A2, Dec. 13, 2013.

Pyrhönen, J., Montonen, J., Lindh, P., Vauterin, J., Otto, M., Replacing Copper with New Carbon Nanomaterials in Electrical Machine Windings, (2015) International Review of Electrical Engineering (IREE), 10 (1), pp. 12-21.

A. Lekawa-Raus, J. Patmore, L. Kurzepa, J. Bulmer, K. Koziol, Electrical properties of carbon nanotube based fibers and their future use in electrical wiring, Advanced Functional Materials, vol. 24, no. 24, pp. 3661–3682, Mar. 2014.

J. Shelton, F. Pyrtle, Thermal Conductivity and Specific Heat Capacity of Carbon Nanotube Bundles, in ASME/JSME 2007 Thermal Eng. Heat Transfer Summer Conf., 2007, pp. 517–520.

Magnetic Compounds, Tengam. 2018. [Online].


Magnets, Magnequench. 2018. [Online].


Neodymium iron boron magnets, Magnetic materials and components. 2018. [Online].


E. M. Palmero D. Casaleiz, N.A. Jimenez, J. Rial, J. de Vicente, A. Nieto, R. Altimira, A. Bollero,, Magnetic-Polymer Composites for Bonding and 3D Printing of Permanent Magnets, IEEE Trans. Magn., pp. 1–4, 2018.

R. Domingo-Roca, J. C. Jackson, J. F. C. Windmill, 3D-printing polymer-based permanent magnets, Mater. Des., vol. 153, pp. 120–128, Sep. 2018.

K. H. Kurth, D. Drummer, Improvement of the magnetic properties of injection molded polymer bonded magnets, in Proc. 3rd Int. Electric Drives Production Conf. (EDPC), 2013, pp. 1–5.

K. H. Kurth, D. Drummer, Influences of the design and production on the characteristic properties of multipolar bonded magnets, in Proc. 4th Int. Electric Drives Production Conf. (EDPC), 2014, pp. 1–6.


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2020 Praise Worthy Prize