Open Access Open Access  Restricted Access Subscription or Fee Access

Systematic Review of Multilevel and Matrix Usage in Power Electronics: Circuit Types, System Taxonomy, Applications and Recommendations


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v15i2.17479

Abstract


In this systematic review paper, the similarities and the differences between the combination of multilevel inverter (MI) and matrix converter (MC) of power electronics types are discussed. First, a brief definition of multilevel, matrix, inverter and converter are presented. Then, the classification of MIs, MCs, and a combination of MI and MC are shown using landscape taxonomy classifications. This paper focuses on research articles that have the keywords ‘multilevel’ and ‘matrix’ from four common databases, namely, Institute of Electrical and Electronics Engineers, Science Direct, Web of Science and Springer, for the last six years. The same query keywords are used in all databases. Those databases are nearly sufficient to set the study directions of MIs and MCs. The combination of the multilevel and matrix is necessary to have both circuit advantages. Usually, the matrix structure is used for sharing purpose and the multilevel structure is used to increase the power quality of the signal. Finally, many future research gaps are presented after comparing the MI, MC and multilevel MC, as well as the manner in which these research gaps can be classified based on power electronics devices.
Copyright © 2020 Praise Worthy Prize - All rights reserved.

Keywords


Multilevel Inverter; Matrix Converter; Systematic Review; Power Electronics

Full Text:

PDF


References


M.Uddin, S.Mekhilef, M.Rivera, and J.Rodriguez, “Imposed Weighting Factor Optimization Method for Torque Ripple Reduction of IM Fed by Indirect Matrix Converter with Predictive Control Algorithm,” J. Electr. Eng. Technol., vol. 10, no. 1, pp. 227–242, Jan.2015.
https://doi.org/10.5370/jeet.2015.10.1.227

M.Uddin, S.Mekhilef, M.Mubin, M.Rivera, and J.Rodriguez, “Model Predictive Torque Ripple Reduction with Weighting Factor Optimization Fed by an Indirect Matrix Converter,” Electr. Power Components Syst., vol. 42, no. 10, pp. 1059–1069, 2014.
https://doi.org/10.1080/15325008.2014.913739

B.Pittermann, B.Pavel, and D.Martin, “Algorithm implementation of traction converter topology based on MFT and single phase matrix converter,” Electr. Eng. Springer Link, vol. 99, no. 4, 2017.
https://doi.org/10.1007/s00202-017-0607-2

T. R.Sumithira and A.N.Kumar, “An experimental investigation on off-grid solar photovoltaic power system using matrix converter,” J. Sci. Ind. Res., vol. 73, no. 2, pp. 124–128, Feb.2014.

K.V.Kandaswamy and S.K.Sahoo, “Harmonic control using matrix converter of unbalanced input voltage supplied from solar power system,” Appl. Sol. Energy, vol. 53, no. 3, pp. 199–207, 2017.
https://doi.org/10.3103/s0003701x17030070

K.Kobravi, R.Iravani, and H.A.Kojori, “Three-Leg/Four-Leg Matrix Converter Generalized Modulation Strategy-Part I: A New Formulation,” IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 848–859, Mar.2013.
https://doi.org/10.1109/tie.2012.2188260

F.Briz, M.Lopez, A.Rodriguez, and M.Arias, “Modular Power Electronic Transformers: Modular Multilevel Converter Versus Cascaded H-Bridge Solutions,” IEEE Ind. Electron. Mag., vol. 10, no. 4, pp. 6–19, 2016.
https://doi.org/10.1109/mie.2016.2611648

M.Khodabandeh, M. R.Zolghadri, M.Shahbazi, and N.Noroozi, “T-type direct AC/AC converter structure,” IET Power Electron., vol. 9, no. 7, pp. 1426–1436, Jun.2016.
https://doi.org/10.1049/iet-pel.2015.0151

R.Alaei, S. A.Khajehoddin, and W.Xu, “Sparse AC/AC Modular Multilevel Converter,” IEEE Trans. Power Deliv., vol. 31, no. 3, pp. 1195–1202, Jun.2016.
https://doi.org/10.1109/tpwrd.2015.2440271

F. B.Effah, P.Wheeler, J.Clare, and A.Watson, “Space-Vector-Modulated Three-Level Inverters With a Single Z-Source Network,” IEEE Trans. Power Electron., vol. 28, no. 6, pp. 2806–2815, Jun.2013.
https://doi.org/10.1109/tpel.2012.2219627

J. P. R. A.Méllo, C. B.Jacobina, and M. B. d. R.Corrêa, “Three-Phase Four-Wire Inverters Based on Cascaded Three-Phase Converters With Four and Three Legs,” IEEE Trans. Ind. Appl., vol. 53, no. 6, pp. 5539–5552, 2017.
https://doi.org/10.1109/tia.2017.2722979

S.Busquets-Monge, R.Griñó, J.Nicolas-Apruzzese, and J.Bordonau, “Decoupled DC-Link Capacitor Voltage Control of DC-AC Multilevel Multileg Converters,” IEEE Trans. Ind. Electron., vol. 63, no. 3, pp. 1344–1349, 2016.
https://doi.org/10.1109/tie.2015.2495295

L.Li, Y.Guan, K.Gong, G.Li, and J.Guo, “Novel Buck Mode Three-Level Direct AC Converter with a High Frequency Link,” J. POWER Electron., vol. 18, no. 2, pp. 407–417, Mar.2018.

M.Abbes, I.Mehouachi, and S.Chebbi, “Circulating current reduction of a grid-connected parallel interleaved converter using energy shaping control,” Electr. Power Syst. Res., vol. 170, pp. 184–193, 2019.
https://doi.org/10.1016/j.epsr.2019.01.020

G. P.Adam, F.Alsokhiry, I.Abdelsalam, K. H.Ahmed, and Y.Al-Turki, “Controlled transition bridge converter: Operating principle, control and application in HVDC transmission systems,” Electr. Power Syst. Res., vol. 163, pp. 98–109, 2018.
https://doi.org/10.1016/j.epsr.2018.06.001

S.Busquets-Monge and L.Caballero, “Switching-Cell Arrays—An Alternative Design Approach in Power Conversion,” IEEE Trans. Ind. Electron., vol. 66, no. 1, pp. 25–36, 2019.
https://doi.org/10.1109/tie.2018.2816002

X.Lin, Y.Lei, and Y.Zhu, “A novel superconducting magnetic energy storage system design based on a three-level T-type converter and its energy-shaping control strategy,” Electr. Power Syst. Res., vol. 162, pp. 64–73, 2018.
https://doi.org/10.1016/j.epsr.2018.05.006

J. P. R. A.Méllo and C. B.Jacobina, “Single-Phase Converter With Shared Leg and Generalizations,” IEEE Trans. Power Electron., vol. 33, no. 6, pp. 4882–4893, 2018.
https://doi.org/10.1109/tpel.2017.2734642

J.Xu, M.Feng, H.Liu, S.Li, X.Xiong, and C.Zhao, “The diode-clamped half-bridge MMC structure with internal spontaneous capacitor voltage parallel-balancing behaviors,” Int. J. Electr. Power Energy Syst., vol. 100, pp. 139–151, 2018.
https://doi.org/10.1016/j.ijepes.2018.02.017

R. K.Subroto and K. L.Lian, “Modeling of a Multilevel Voltage Source Converter Using the Fast Time-Domain Method,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 2, no. 4, pp. 1117–1126, 2014.
https://doi.org/10.1109/jestpe.2014.2322448

S.Kadyrov, P. S.Skrzypacz, and Y. L.Familiant, “A simple analysis of flying capacitor converter,” COMPEL-THE Int. J. Comput. Math. Electr. Electron. Eng., vol. 37, no. 3, pp. 1244–1257, 2018.
https://doi.org/10.1108/compel-07-2017-0282

T. H.Huang and K. L.Lian, “Harmonic Modeling of a Diode-Clamped Multilevel Voltage Source Converter for Predicting Uncharacteristic Harmonics,” Math. Probl. Eng., 2018.
https://doi.org/10.1155/2018/3250761

A.Ovalle, M. E.Hernandez, and G. A.Ramos, “A Flexible Nonorthogonal-Reference-Frame-Based SVPWM Framework for Multilevel Inverters,” IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4925–4938, Jun.2017.
https://doi.org/10.1109/tpel.2016.2602324

J. S.Mohd.Ali and V.Krishnaswamy, “An assessment of recent multilevel inverter topologies with reduced power electronics components for renewable applications,” Renew. Sustain. Energy Rev., vol. 82, pp. 3379–3399, 2018.
https://doi.org/10.1016/j.rser.2017.10.052

S.Chatterjee, P.Kumar, and S.Chatterjee, “A techno-commercial review on grid connected photovoltaic system,” Renew. Sustain. Energy Rev., vol. 81, pp. 2371–2397, 2018.
https://doi.org/10.1016/j.rser.2017.06.045

A.Hamidi, A.Ahmadi, M. S.Feali, and S.Karimi, “Implementation of digital FCS-MP controller for a three-phase inverter,” Electr. Eng., vol. 97, no. 1, pp. 25–34, 2014.
https://doi.org/10.1007/s00202-014-0309-y

P.Bhanu and N.Pappa, “SVPWM: Torque Level Controlling of Wind Turbine System Using Fuzzy and ABC-DQ Transformation,” Int. J. Fuzzy Syst., vol. 19, no. 1, pp. 141–154, 2017.
https://doi.org/10.1007/s40815-016-0157-1

K. S.Gaeid, R. A.Maher, and A. J.Lazim, “Multilevel Inverter Fault Tolerant Control with Wavelet Index in Induction Motor,” J. Electr. Eng. Technol., 2019.
https://doi.org/10.1007/s42835-019-00086-0

Y.Naderi, S. H.Hosseini, S. G.Zadeh, B.Mohammadi-Ivatloo, M.Savaghebi, and J. M.Guerrero, “An optimized direct control method applied to multilevel inverter for microgrid power quality enhancement,” Int. J. Electr. Power Energy Syst., vol. 107, pp. 496–506, 2019.
https://doi.org/10.1016/j.ijepes.2018.12.007

B. H.Kumar, V. B.Borghate, M.Mohankumar, L.Karasani, and R.Reddy, “An Improved Space Vector Pulse Width Modulation for Nine-Level Asymmetric Cascaded H-Bridge Three-Phase Inverter,” Arab. J. Sci. Eng., vol. 44, no. 3, pp. 2453–2465, 2019.
https://doi.org/10.1007/s13369-018-3586-3

H.Rahman and M.Yaqoob, “Cascaded Hybrid Multi-level Inverter for Selective Harmonics Elimination,” Iran. J. Sci. Technol. Trans. Electr. Eng., vol. 42, no. 2, pp. 135–148, 2018.
https://doi.org/10.1007/s40998-018-0054-8

S.Sangeetha and S.Jeevananthan, “Influence of crossover methods used by genetic algorithm-based heuristic to solve the selective harmonic equations (SHE) in multi-level voltage source inverter,” Sadhana - Acad. Proc. Eng. Sci., vol. 40, no. 8, pp. 2389–2410, 2015.
https://doi.org/10.1007/s12046-015-0422-2

J. M.Vesapogu, S.Peddakotla, and S. R. A.Kuppa, “Harmonic analysis and FPGA implementation of SHE controlled three phase CHB 11-level inverter in MV drives using deterministic and stochastic optimization techniques,” Springerplus, vol. 2, no. 1, pp. 1–16, 2013.
https://doi.org/10.1186/2193-1801-2-370

S.Govindugari, V.VGanesh, and S.Madichetty, “Application of bacteria foraging algorithm for modular multilevel converter-based microgrid with effect of wind power,” Electr. Eng., vol. 100, no. 3, pp. 2023–2036, 2018.
https://doi.org/10.1007/s00202-018-0681-0

M. R.Banaei and P.A.Shayan, “Solution for selective harmonic optimisation in diode-clamped inverters using radial basis function neural networks,” IET Power Electron., vol. 7, no. 7, pp. 1797–1804, Jul.2014.
https://doi.org/10.1049/iet-pel.2013.0574

K.Yang, L.Chen, J.Zhang, J.Hao, and W.Yu, “Parallel resultant elimination algorithm to solve the selective harmonic elimination problem,” IET Power Electron., vol. 9, no. 1, pp. 71–80, 2016.
https://doi.org/10.1049/iet-pel.2015.0070

A.Ajami, M. R. J.Oskuee, A.Mokhberdoran, and H.Shokri, “Selective harmonic elimination method for wide range of modulation indexes in multilevel inverters using ICA,” J. Cent. South Univ., vol. 21, no. 4, pp. 1329–1338, 2014.
https://doi.org/10.1007/s11771-014-2070-9

L.V. Suresh Kumar, G.V. Nagesh Kumar, and Sreedhar Madichetty, “Pattern search algorithm based automatic online parameter estimation for AGC with effects of wind power,” Int. J. Electr. Power Energy Syst., vol. 82, pp. 135–142, 2017.
https://doi.org/10.1016/j.ijepes.2016.05.009

G.Revana and V.Reddy, “Closed Loop Fuzzy Logic Controlled PV Based Cascaded Boost Five-Level Inverter System,” J. Inst. Eng. Ser. B, vol. 99, no. 2, pp. 137–145, 2018.
https://doi.org/10.1007/s40031-017-0291-7

D.Tamilarasi. and T.S.Sivakumaran, “Fuzzy PI Control of Symmetrical and Asymmetrical Multilevel Current Source Inverter,” Int. J. Fuzzy Syst., vol. 20, no. 2, pp. 426–443, 2018.
https://doi.org/10.1007/s40815-017-0352-8

V.Mahajan, P.Agarwal, and H.O.Gupta, “Implementation of High-Voltage Multilevel Harmonic Filter Based on Rotated Carrier Modulation and Artificial Intelligence-Based Controllers,” Arab. J. Sci. Eng., vol. 39, no. 10, pp. 7127–7143, 2014.
https://doi.org/10.1007/s13369-014-1280-7

R.Cisneros, M.Pirro, G.Bergna, R.Ortega, G.Ippoliti, and M.Molinas, “Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters,” Control Eng. Pract., vol. 43, pp. 109–119, 2015.
https://doi.org/10.1016/j.conengprac.2015.07.002

L.Hetel, M.Defoort, and M.Djemaï, “Binary Control Design for a Class of Bilinear Systems: Application to a Multilevel Power Converter,” IEEE Trans. Control Syst. Technol., vol. 24, no. 2, pp. 719–726, 2016.
https://doi.org/10.1109/tcst.2015.2460696

M.Espinoza-B et al., “An Integrated Converter and Machine Control System for MMC-Based High-Power Drives,” IEEE Trans. Ind. Electron., vol. 66, no. 3, pp. 2343–2354, 2019.
https://doi.org/10.1109/tie.2018.2801839

A.Zama, A.Benchaib, S.Bacha, D.Frey, and S.Silvant, “High Dynamics Control for MMC Based on Exact Discrete-Time Model With Experimental Validation,” IEEE Trans. Power Deliv., vol. 33, no. 1, pp. 477–488, 2018.
https://doi.org/10.1109/tpwrd.2017.2707343

S.S.Lee and Y.E.Heng, “A tuning-less model predictive control for modular multilevel converter capable of unbalanced grid fault,” Int. J. Electr. Power Energy Syst., vol. 94, pp. 213–224, 2018.
https://doi.org/10.1016/j.ijepes.2017.07.011

A.Mora et al., “Model-Predictive-Control-Based Capacitor Voltage Balancing Strategies for Modular Multilevel Converters,” IEEE Trans. Ind. Electron., vol. 66, no. 3, pp. 2432–2443, Mar.2019.
https://doi.org/10.1109/tie.2018.2844842

M.Mehrasa, E.Pouresmaeil, S.Zabihi, I.Vechiu, and J. P. S.Catalão, “A multi-loop control technique for the stable operation of modular multilevel converters in HVDC transmission systems,” Int. J. Electr. Power Energy Syst., vol. 96, pp. 194–207, 2018.
https://doi.org/10.1016/j.ijepes.2017.10.006

J.Xu, Y.Zhao, C.Zhao, and H.Ding, “Unified High-Speed EMT Equivalent and Implementation Method of MMCs With Single-Port Submodules,” IEEE Trans. Power Deliv., vol. 34, no. 1, pp. 42–52, 2019.
https://doi.org/10.1109/tpwrd.2018.2875073

J.Xu, S.Fan, C.Zhao, and A. M.Gole, “High-Speed EMT Modeling of MMCs With Arbitrary Multiport Submodule Structures Using Generalized Norton Equivalents,” IEEE Trans. Power Deliv., vol. 33, no. 3, pp. 1299–1307, 2018.
https://doi.org/10.1109/tpwrd.2017.2740857

W.Liu and Y.Xu, “Reliability modeling of MMC-based flexible interconnection controller considering the uncertainty of current loading,” Microsyst. Technol., no. 3, 2019.
https://doi.org/10.1007/s00542-018-4070-4

J.Xu, L.Wang, D.Wu, H.Jing, and C.Zhao, “Reliability modeling and redundancy design of hybrid MMC considering decoupled sub-module correlation,” Int. J. Electr. Power Energy Syst., vol. 105, pp. 690–698, 2019.
https://doi.org/10.1016/j.ijepes.2018.09.026

X.Lu, W.Xiang, W.Lin, and J.Wen, “Small-signal modeling of MMC based DC grid and analysis of the impact of DC reactors on the small-signal stability,” Int. J. Electr. Power Energy Syst., vol. 101, pp. 25–37, 2018.
https://doi.org/10.1016/j.ijepes.2018.01.046

C.Guo, Z.Yin, C.Zhao, and R.Iravani, “Small-signal dynamics of hybrid LCC-VSC HVDC systems,” Int. J. Electr. Power Energy Syst., vol. 98, pp. 362–372, 2018.
https://doi.org/10.1016/j.ijepes.2017.12.010

M.Ashourloo, R.Mirzahosseini, and R.Iravani, “Enhanced Model and Real-Time Simulation Architecture for Modular Multilevel Converter,” IEEE Trans. Power Deliv., vol. 33, no. 1, pp. 466–476, 2018.
https://doi.org/10.1109/tpwrd.2017.2723540

F.Zhang et al., “A fixed topology Thevenin equivalent integral model for modular multilevel converters,” Int. Trans. Electr. ENERGY Syst., vol. 28, no. 3, Mar.2018.
https://doi.org/10.1002/etep.2496

A.E.Leon and S.J.Amodeo, “Modeling, control, and reduced-order representation of modular multilevel converters,” Electr. Power Syst. Res., vol. 163, pp. 196–210, 2018.
https://doi.org/10.1016/j.epsr.2018.05.024

Q.Huai et al., “Rapid Fault Diagnosis of a Back-to-Back MMC-HVDC Transmission System under AC Line Fault,” ENERGIES, vol. 11, no. 6, Jun.2018.
https://doi.org/10.3390/en11061534

D.Vozikis, G. P.Adam, P.Rault, D.Tzelepis, D.Holliday, and S.Finney, “Steady-state performance of state-of-the-art modular multilevel and alternate arm converters with DC fault-blocking capability,” Int. J. Electr. Power Energy Syst., vol. 99, pp. 618–629, 2018.
https://doi.org/10.1016/j.ijepes.2018.01.054

G.Li et al., “An improved DIM interface algorithm for the MMC-HVDC power hardware-in-the-loop simulation system,” Int. J. Electr. Power Energy Syst., vol. 99, pp. 69–78, 2018.
https://doi.org/10.1016/j.ijepes.2017.12.013

F.Shahnazian, J.Adabi, E.Pouresmaeil, and J. P. S.Catalão, “Interfacing modular multilevel converters for grid integration of renewable energy sources,” Electr. Power Syst. Res., vol. 160, pp. 439–449, 2018.
https://doi.org/10.1016/j.epsr.2018.03.014

J.Sun and H.Liu, “Sequence Impedance Modeling of Modular Multilevel Converters,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 5, no. 4, pp. 1427–1443, Dec.2017.
https://doi.org/10.1109/jestpe.2017.2762408

C.Li, C.Zhao, J.Xu, Y.Ji, F.Zhang, and T.An, “A Pole-to-Pole Short-Circuit Fault Current Calculation Method for DC Grids,” IEEE Trans. Power Syst., vol. 32, no. 6, pp. 4943–4953, 2017.
https://doi.org/10.1109/tpwrs.2017.2682110

N. B.deFreitas, C. B.Jacobina, A. C. N.Maia, and V. F. M. B.Melo, “Six-Leg Single-Phase Multilevel Rectifier Inverter: PWM Strategies and Control,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 350–361, 2017.
https://doi.org/10.1109/tia.2016.2616321

L.Tarisciotti, P.Zanchetta, A.Watson, P.Wheeler, J. C.Clare, and S.Bifaretti, “Multiobjective Modulated Model Predictive Control for a Multilevel Solid-State Transformer,” IEEE Trans. Ind. Appl., vol. 51, no. 5, pp. 4051–4060, 2015.
https://doi.org/10.1109/tia.2015.2429113

M.Bouzidi, A.Benaissa, S.Barkat, S.Bouafia, and A.Bouzidi, “Virtual flux direct power control of the three-level NPC shunt active power filter based on backstepping control,” Int. J. Syst. Assur. Eng. Manag., vol. 8, no. 2, pp. 287–300, 2017.
https://doi.org/10.1007/s13198-016-0433-3

R.Jadeja, S.Patel, and S. K.Chauhan, “STATCOM - A Preface to Power Quality in Power Systems Performance,” Eng. Technol. Appl. Sci. Res., vol. 6, no. 1, pp. 895–905, Feb.2016.

Y.Chen, M.Wen, E.Lei, X.Yin, J.Lai, and Z.Wang, “Passivity-based control of cascaded multilevel converter based D-STATCOM integrated with distribution transformer,” Electr. Power Syst. Res., vol. 154, pp. 1–12, 2018.
https://doi.org/10.1016/j.epsr.2017.08.001

J.Xu, C.Zhao, W.Liu, and C.Guo, “Accelerated Model of Modular Multilevel Converters in PSCAD/EMTDC,” IEEE Trans. Power Deliv., vol. 28, no. 1, pp. 129–136, 2013.
https://doi.org/10.1109/tpwrd.2012.2201511

I.González-Torres, H.Miranda-Vidales, J.Espinoza, C.-F.Méndez-Barrios, and M.González, “State feedback control assisted by a gain scheduling scheme for three-level NPC VSC-HVDC transmission systems,” Electr. Power Syst. Res., vol. 157, pp. 227–237, 2018.
https://doi.org/10.1016/j.epsr.2017.12.031

Z.Zhang, Z.Xu, Y.Xue, and G.Tang, “DC-Side Harmonic Currents Calculation and DC-Loop Resonance Analysis for an LCC -MMC Hybrid HVDC Transmission System,” IEEE Trans. Power Deliv., vol. 30, no. 2, pp. 642–651, 2015.
https://doi.org/10.1109/tpwrd.2013.2297442

Z.Yao, Q.Zhang, P.Chen, and Q.Zhao, “Research on fault diagnosis for MMC-HVDC Systems,” Prot. Control Mod. Power Syst., pp. 1–7, 2016.
https://doi.org/10.1186/s41601-016-0022-0

J.Pereda and T. C.Green, “Direct Modular Multilevel Converter With Six Branches for Flexible Distribution Networks,” IEEE Trans. Power Deliv., vol. 31, no. 4, pp. 1728–1737, 2016.
https://doi.org/10.1109/tpwrd.2016.2521262

N.Lin and V.Dinavahi, “Behavioral Device-Level Modeling of Modular Multilevel Converters in Real Time for Variable-Speed Drive Applications,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 5, no. 3, pp. 1177–1191, Sep.2017.
https://doi.org/10.1109/jestpe.2017.2673818

S. M. H.Hosseini and M. R.Semsar, “A novel technology for control of variable speed pumped storage power plant,” J. Cent. South Univ., vol. 23, no. 8, pp. 2008–2023, 2016.
https://doi.org/10.1007/s11771-016-3258-y

M.Khodja et al., “High-performance multicell series inverter-fed induction motor drive,” Electr. Eng., vol. 99, no. 3, pp. 1121–1137, 2017.
https://doi.org/10.1007/s00202-016-0472-4

B.Zhu, K.Rajashekara, and H.Kubo, “Comparison between current-based and flux/torque-based model predictive control methods for open-end winding induction motor drives,” IET Electr. Power Appl., vol. 11, no. 8, pp. 1397–1406, Sep.2017.
https://doi.org/10.1049/iet-epa.2016.0517

K.Imarazene, H.Chekireb, and E.M.Berkouk, “Selective harmonics elimination PWM with self-balancing DC-link in photovoltaic 7-level inverter,” Turkish J. Electr. Eng. Comput. Sci., vol. 24, no. 5, pp. 3999-U1730, 2016.
https://doi.org/10.3906/elk-1411-181

R.Sridhar, S.Jeevananthan, S. S.Dash, and N. T.Selvan, “Unified MPPT controller for partially shaded panels in a photovoltaic array,” Int. J. Autom. Comput., vol. 11, no. 5, pp. 536–542, 2014.
https://doi.org/10.1007/s11633-014-0828-z

M. A.Noyal, D. A.Ananthi, and C.Raja, “Modified hybrid multilevel inverter with reduced number of switches for PV application with smart IoT system,” J. Ambient Intell. Humaniz. Comput., 2018.
https://doi.org/10.1007/s12652-018-1151-2

M.Morales-Caporal, J.Rangel-Magdaleno, H.Peregrina-Barreto, and R.Morales-Caporal, “FPGA-in-the-loop simulation of a grid-connected photovoltaic system by using a predictive control,” Electr. Eng., vol. 100, no. 3, pp. 1327–1337, 2018.
https://doi.org/10.1007/s00202-017-0596-1

J.Bao, W.Bao, and Y.Li, “A power conversion system for PMSG-based WECS operating with fully-controlled current-source converters,” J. Zhejiang Univ. Sci. C, vol. 15, no. 3, pp. 232–240, 2014.
https://doi.org/10.1631/jzus.c1300231

A.Dida and D.Benattous, “Modeling and Control of DFIG Through Back-to-Back Five Levels Converters Based on Neuro-Fuzzy Controller,” J. Control. Autom. Electr. Syst., vol. 26, no. 5, pp. 506–520, 2015.
https://doi.org/10.1007/s40313-015-0190-6

Z.Xu, “Power Flow Control of High Voltage DC Networks for Grid Integration of Offshore Wind Power,” Energy Procedia, vol. 75, pp. 1698–1704, 2015.
https://doi.org/10.1016/j.egypro.2015.07.429

J.Pegueroles, M.Barnes, O.Gomis, A.Beddard, and F. D.Bianchi, “Modelling and Analysis of CIGRE HVDC Offshore Multi-terminal Benchmark Grid,” Energy Procedia, vol. 80, pp. 72–82, 2015.
https://doi.org/10.1016/j.egypro.2015.11.409

L.Wang, J.Yang, X.Zhang, and O. K.Oladele, “Effective measures for improving switching performance of SiC JFET bi-directional switches,” J. Eng., vol. 2018, no. 13, pp. 468–472, 2018.
https://doi.org/10.1049/joe.2018.0027

D.Karwatzki and A.Mertens, “Generalized Control Approach for a Class of Modular Multilevel Converter Topologies,” IEEE Trans. Power Electron., vol. 33, no. 4, pp. 2888–2900, 2018.
https://doi.org/10.1109/tpel.2017.2703917

C.Jibhakate, M.Chaudhari, and M.Renge, “Implementation of Closed-Loop Control of NSC-Drive with Reactive,” Arab. J. Sci. Eng., 2018.
https://doi.org/10.1007/s13369-018-3650-z

S.Thamizharasan, J.Baskaran, and S.Ramkumar, “A New Cascaded Multilevel Inverter Topology with Voltage Sources Arranged in Matrix Structure,” J. Electr. Eng. Technol., vol. 10, no. 4, pp. 1552–1557, Jul.2015.
https://doi.org/10.5370/jeet.2015.10.4.1552

Y.Soufi, T.Bahi, S.Lekhchine, and D.Dib, “Performance analysis of DFIM fed by matrix converter and multi-level inverter,” Energy Convers. Manag., vol. 72, pp. 187–193, 2013.
https://doi.org/10.1016/j.enconman.2013.03.006

N. P. R.Iyer, “Performance comparison of a three-phase multilevel matrix converter with three flying capacitors per output phase with a three-phase conventional matrix converter,” Electr. Eng., vol. 99, no. 2, pp. 775–789, 2017.
https://doi.org/10.1007/s00202-016-0500-4

M.Diaz et al., “Control of Wind Energy Conversion Systems Based on the Modular Multilevel Matrix Converter,” IEEE Trans. Ind. Electron., vol. 64, no. 11, pp. 8799–8810, 2017.
https://doi.org/10.1109/tie.2017.2733467

B.Fan, K.Wang, P.Wheeler, C.Gu, and Y.Li, “A Branch Current Reallocation Based Energy Balancing Strategy for the Modular Multilevel Matrix Converter Operating Around Equal Frequency,” IEEE Trans. Power Electron., vol. 33, no. 2, pp. 1105–1117, 2018.
https://doi.org/10.1109/tpel.2017.2685431

B.Fan, K.Wang, P.Wheeler, C.Gu, and Y.Li, “An Optimal Full Frequency Control Strategy for the Modular Multilevel Matrix Converter Based on Predictive Control,” IEEE Trans. Power Electron., vol. 33, no. 8, pp. 6608–6621, 2018.
https://doi.org/10.1109/tpel.2017.2755767

S.Liu, M.Saeedifard, and X.Wang, “Analysis and Control of the Modular Multilevel Matrix Converter Under Unbalanced Grid Conditions,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 6, no. 4, pp. 1979–1989, 2018.
https://doi.org/10.1109/jestpe.2018.2812723

R.Wang, D.Lei, Y.Zhao, C.Liu, and Y.Hu, “Modulation Strategy of a 3 x 5 Modular Multilevel Matrix Converter,” ENERGIES, vol. 11, no. 2, Feb.2018.
https://doi.org/10.3390/en11020464

O.Bouhali, B.Francois, and N.Rizoug, “Equivalent matrix structure modelling and control of a three-phase flying capacitor multilevel inverter,” IET Power Electron., vol. 7, no. 7, pp. 1787–1796, Jul.2014.
https://doi.org/10.1049/iet-pel.2013.0414

R.Baranwal, K.Basu, and N.Mohan, “Carrier-Based Implementation of SVPWM for Dual Two-Level VSI and Dual Matrix Converter With Zero Common-Mode Voltage,” IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1471–1487, Mar.2015.
https://doi.org/10.1109/tpel.2014.2316528

S.Tewari and N.Mohan, “Matrix Converter Based Open-End Winding Drives With Common-Mode Elimination: Topologies, Analysis, and Comparison,” IEEE Trans. Power Electron., vol. 33, no. 10, pp. 8578–8595, Oct.2018.
https://doi.org/10.1109/tpel.2017.2777915

S. M. M.Sangdehi, S.Hamidifar, and N. C.Kar, “A Novel Bidirectional DC/AC Stacked Matrix Converter Design for Electrified Vehicle Applications,” IEEE Trans. Veh. Technol., vol. 63, no. 7, pp. 3038–3050, 2014.
https://doi.org/10.1109/tvt.2014.2325740

H.Wang et al., “Topology and Modulation Scheme of a Three-Level Third-Harmonic Injection Indirect Matrix Converter,” IEEE Trans. Ind. Electron., vol. 64, no. 10, pp. 7612–7622, 2017.
https://doi.org/10.1109/tie.2017.2694386

L.Wang et al., “A Three-Level T-Type Indirect Matrix Converter Based on the Third-Harmonic Injection Technique,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 5, no. 2, pp. 841–853, 2017.
https://doi.org/10.1109/jestpe.2017.2666418

A. K.Eedara, C.Sekhar, K.Srinivasa, and R.Rayapudi, “Modified Model Predictive Control of Back-to-Back T-type NPC Converter Interfacing Wind Turbine-Driven PMSG and Electric Grid,” Arab. J. Sci. Eng., 2019.
https://doi.org/10.1007/s13369-019-03775-0

N.Taib, B.Metidji, and T.Rekioua, “Performance and efficiency control enhancement of wind power generation system based on DFIG using three-level sparse matrix converter,” Int. J. Electr. Power Energy Syst., vol. 53, pp. 287–296, 2013.
https://doi.org/10.1016/j.ijepes.2013.05.019

K.Fouad, H.Merabet, A.Allali, A.Taibi, and M.Denai, “Multivariable Control of a grid-connected wind energy conversion system with power quality enhancement,” Energy Syst., vol. 9, no. 1, pp. 25–57, 2018.
https://doi.org/10.1007/s12667-016-0223-7

L.Qiu, L.Xu, K.Wang, Z.Zheng, and Y.Li, “Research on Output Voltage Modulation of a Five-Level Matrix Converter,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2568–2583, 2017.
https://doi.org/10.1109/tpel.2016.2581831

Q.Jianglei, X.Lie, W.Lina, and H.Yannia, “Research on the modulation of a three-level matrix converter with reduced common-mode voltage,” J. Eng., vol. 2018, no. 13, pp. 607–613, 2018.
https://doi.org/10.1049/joe.2018.0063

Q.Jianglei, X.Lie, W.Lina, and H.Yannian, “Research on the modulation and control of multilevel matrix converter,” J. Eng., vol. 2018, no. 13, pp. 614–621, 2018.
https://doi.org/10.1049/joe.2018.0058

Y.Hu, R.Zeng, W.Cao, J.Zhang, and S. J.Finney, “Design of a Modular, High Step-Up Ratio DC-DC Converter for HVDC Applications Integrating Offshore Wind Power,” IEEE Trans. Ind. Electron., vol. 63, no. 4, pp. 2190–2202, Apr.2016.
https://doi.org/10.1109/tie.2015.2510975

S.Liu, X.Wang, Y.Meng, P.Sun, H.Luo, and B.Wang, “A Decoupled Control Strategy of Modular Multilevel Matrix Converter for Fractional Frequency Transmission System,” IEEE Trans. Power Deliv., vol. 32, no. 4, pp. 2111–2121, 2017.
https://doi.org/10.1109/tpwrd.2016.2646384

M.Diaz et al., “Vector Control of a Modular Multilevel Matrix Converter Operating Over the Full Output-Frequency Range,” IEEE Trans. Ind. Electron., vol. 66, no. 7, pp. 5102–5114, 2019.
https://doi.org/10.1109/tie.2018.2870367

Y.Sun, W.Xiong, M.Su, X.Li, H.Dan, and J.Yang, “Topology and Modulation for a New Multilevel Diode-Clamped Matrix Converter,” IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6352–6360, 2014.
https://doi.org/10.1109/tpel.2014.2305711

H.Dan, T.Peng, M.Su, Y.Sun, G.Zhang, and W.Xiong, “Implementation of phase disposition modulation method for the three-level diode-clamped matrix converter,” IET Power Electron., vol. 8, no. 11, pp. 2107–2114, Nov.2015.
https://doi.org/10.1049/iet-pel.2014.0887

M.Su et al., “Modified modulation scheme for three-level diode-clamped matrix converter under unbalanced input conditions,” IET Power Electron., vol. 11, no. 8, pp. 1425–1433, Jul.2018.
https://doi.org/10.1049/iet-pel.2017.0512

L.Baruschka and A.Mertens, “A New Three-Phase AC/AC Modular Multilevel Converter With Six Branches in Hexagonal Configuration,” IEEE Trans. Ind. Appl., vol. 49, no. 3, pp. 1400–1410, 2013.
https://doi.org/10.1109/tia.2013.2252593

L. C.Gili, L. O.Seman, and S. V. G.Oliveira, “Different Switching Sequence Comparison Applied to Multimodular Matrix Converter using ISVM,” IEEE Lat. Am. Trans., vol. 16, no. 6, pp. 1595–1602, 2018.
https://doi.org/10.1109/tla.2018.8444154

J.Wang, B.Wu, D.Xu, and N. R.Zargari, “Indirect Space-Vector-Based Modulation Techniques for High-Power Multimodular Matrix Converters,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3060–3071, Aug.2013.
https://doi.org/10.1109/tie.2012.2200215

J.Wang, B.Wu, D.Xu, and N. R.Zargari, “Phase-Shifting-Transformer-Fed Multimodular Matrix Converter Operated by a New Modulation Strategy,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4329–4338, 2013.
https://doi.org/10.1109/tie.2012.2217714

W.Kawamura, M.Hagiwara, and H.Akagi, “A Low-Speed, High-Torque Motor Drive Using a Modular Multilevel Cascade Converter Based on Triple-Star Bridge Cells (MMCC-TSBC),” IEEE Trans. Ind. Appl., vol. 51, no. 5, pp. 3965–3974, 2015.
https://doi.org/10.1109/ecce.2014.6953613

W.Kawamura, M.Hagiwara, and H.Akagi, “Control and Experiment of a Modular Multilevel Cascade Converter Based on Triple-Star Bridge Cells,” IEEE Trans. Ind. Appl., vol. 50, no. 5, pp. 3536–3548, 2014.
https://doi.org/10.1109/tia.2014.2311759

Y.Wan, S.Liu, and J.Jiang, “Generalised analytical methods and current-energy control design for modular multilevel cascade converter,” IET Power Electron., vol. 6, no. 3, pp. 495–504, 2013.
https://doi.org/10.1049/iet-pel.2012.0494

B.Fan, K.Wang, Z.Zheng, L.Xu, and Y.Li, “Optimized Branch Current Control of Modular Multilevel Matrix Converters Under Branch Fault Conditions,” IEEE Trans. Power Electron., vol. 33, no. 6, pp. 4578–4583, 2018.
https://doi.org/10.1109/tpel.2017.2769117

I.González-Torres, H.Miranda, C.-F.Méndez-Barrios, J.Espinoza, and V.Cárdenas, “Long-length horizons dynamic matrix predictive control for a MMC inverter,” Electr. Power Syst. Res., vol. 168, pp. 137–145, 2019.
https://doi.org/10.1016/j.epsr.2018.11.020

S.Nanda Kumar, S.Vijayan, and E.Nanda Kumar, “Asymmetric SVM Technique for Minimizing Switching Loss of Inverter,” Arab. J. Sci. Eng., vol. 39, no. 4, pp. 3123–3136, 2014.
https://doi.org/10.1007/s13369-014-0956-3

N. R.Chaudhuri, R.Oliveira, and A.Yazdani, “Stability Analysis of Vector-Controlled Modular Multilevel Converters in Linear Time-Periodic Framework,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 5255–5269, Jul.2016.
https://doi.org/10.1109/tpel.2015.2480845

A.Djahbar, B.Benziane, and A.Zegaoui, “A Novel Modulation Method for Multilevel Matrix Converter,” Energy Procedia, vol. 50, pp. 988–998, 2014.
https://doi.org/10.1016/j.egypro.2014.06.118

W.Jiang, W.Li, Z.Wu, Y.She, and Z.Tao, “Space-vector pulse-width modulation algorithm for multilevel voltage source inverters based on matrix transformation and including operation in the over-modulation region,” IET Power Electron., vol. 7, no. 12, pp. 2925–2933, 2014.
https://doi.org/10.1049/iet-pel.2013.0823

K. J.Pratheesh, G.Jagadanand, and R.Ramchand, “A Generalized-Switch-Matrix-Based Space Vector Modulation Technique Using the Nearest Level Modulation Concept for Neutral-Point-Clamped Multilevel Inverters,” IEEE Trans. Ind. Electron., vol. 65, no. 6, pp. 4542–4552, 2018.
https://doi.org/10.1109/tie.2017.2772172

K. J.Pratheesh, G.Jagadanand, and R.Ramchand, “A Generalized Space Vector Modulation Scheme Based on a Switch Matrix for Cascaded H-Bridge Multilevel Inverters,” J. POWER Electron., vol. 18, no. 2, pp. 522–532, Mar.2018.
https://doi.org/10.1109/tie.2017.2772172

Q.Xu, F.Ma, A.Luo, Z.He, and H.Xiao, “Analysis and Control of M3C-Based UPQC for Power Quality Improvement in Medium/High-Voltage Power Grid,” IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8182–8194, 2016.
https://doi.org/10.1109/tpel.2016.2520586

M. R.Islam, Y.Guo, and J.Zhu, “A review of offshore wind turbine nacelle: Technical challenges, and research and developmental trends,” Renew. Sustain. Energy Rev., vol. 33, pp. 161–176, 2014.
https://doi.org/10.1016/j.rser.2014.01.085

R. M. P.Balamurugan, “A model predictive controller for improvement in power quality from a hybrid renewable energy system,” Soft Comput., 2018.
https://doi.org/10.1007/s00500-018-3626-7

C.Liu, R.Ma, H.Bai, Z.Li, F.Gechter, and F.Gao, “Hybrid modelling of power electronic system for hardware-in-the-loop application,” Electr. Power Syst. Res., vol. 163, pp. 502–512, 2018.
https://doi.org/10.1016/j.epsr.2018.06.018


Refbacks




Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize