Open Access Open Access  Restricted Access Subscription or Fee Access

InP/Si High Efficiency Heterojunction-Junction Solar Cell Design Using PSO and the GA Algorithms


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v15i3.17155

Abstract


This paper presents a single junction solar cell using an Atlas code simulation followed by an optimization using MATLAB software. A noticeable interest occurs in the development of a highly efficient solar cell thanks to its flexibility and lightweight. The INP thin- film solar cell is one of the top qualifiers in the thin- film solar cell market that has a significant power conversion efficiency compared to that of other solar cells. Two algorithms methods are applied on this device in order to get high power conversion efficiency, then the results of each method are compared to the others. In addition, an evaluation is performed to the present junction solar cell by comparing the presented device to similar experimental works. As a result of this paper, an optimization of single junction silicon solar cell, a high short-circuit current density of 43.74 mA/cm2, a maximum open-circuit voltage of 804 mV and a high power conversion efficiency of 30.3% are achieved. The flexibility of the proposed methodology is finally demonstrated and explained.
Copyright © 2020 Praise Worthy Prize - All rights reserved.

Keywords


High Efficient Single Junction; InP/Silicon; Optimization; PSO and GA Algorithm

Full Text:

PDF


References


Shockley, W. & Queisser, H. J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys. 32, 510 (1961).
https://doi.org/10.1063/1.1736034

Loferski, J. J. Theoretical considerations governing the choice of the optimum semiconductor photovoltaic solar energy conversion. J. Appl. Phys., vol. 27, pp.777-78, 1956.
https://doi.org/10.1063/1.1722483

Singh, K.J., Sarkar, S.K.,. A wide band gap In 0.5 (Al 0.7 Ga 0.3) 0.5 P Back Surface Field layer increases 6% more efficiency in DLAR Dual Junction InGaP solar cell, in: 2016 International Conference on Energy Efficient Technologies for Sustainability (ICEETS), IEEE, pp. 182–186. 2016.
https://doi.org/10.1109/iceets.2016.7582922

Xingtian Yin,Corsin Battaglia, Yongjing Lin. “19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO2 Contact. ACS Photonic J. 2014.

Oleg S., Arsen Subashiev, Zhichao Chen, and Serge Luryi, Radiation. Efficiency of heavily doped bulk n-InP semiconductor. Journal of Applied Physics. Vol. 108(1), 013101, 2010.
https://doi.org/10.1063/1.3455874

Keavney, C. J.; Haven, V. E.; Vernon, S. M.; Emitter structures in MOCVD InP solar-cells. Conference Record of the Twenty First IEEE Photovoltaic Specialists Conference - 1990, Vol. 1;; pp. 141-144, 1990.
https://doi.org/10.1109/pvsc.1990.111606

K. Attari, L. Amhaimar, A. El yaakoubi, A.Asselman, and M. Bassou. The Design and Optimization of GaAs Single Solar Cells Using the Genetic Algorithm and Silvaco ATLAS. J. Photoenergy Vol. 2017, pp. 1-7, 2017.
https://doi.org/10.1155/2017/8269358

S. Michael, A. Bates. The design and optimization of advanced multijunction solar cells using the Silvaco ATLAS oftware package. J. Solar Energy Materials & Solar Cells vol. 87, pp. 785–794, 2005.
https://doi.org/10.1016/j.solmat.2004.07.051

A. Talhi, A. Belghachi, H. Moughli, B. Amiri, and L. Varani, Numerical simulation of multi-quantum solar cells GaAs/InAs using Silvaco Atlas, Digest Journal of Nanomaterials and Biostructures, vol. 11, pp. 1361–1366, 2016.

M. Wolf, Limitations and Possibilities for Improvement of Photovoltaic Solar Energy Converters: Part I: Considerations for Earth's Surface Operation, Proceeding of IRE, Vol.48; pp. 1246-1263. 1960
https://doi.org/10.1109/jrproc.1960.287647

N.F. Hamid, N. A. Rahim, J. Selvaraj Solar cell parameters extraction using particle swarm optimization algorithm, IEEE Conference on Clean Energy and Technology (CEAT), pp. 461-465, 2013.
https://doi.org/10.1109/ceat.2013.6775676

A .Khare , S. Rangnekar A review of particle swarm optimization and its applications in Solar Photovoltaic system, J. Applied Soft Computing, vol. 13, pp. 2997–3006, 2013.
https://doi.org/10.1016/j.asoc.2012.11.033

SILVACO Data Systems Inc, Silvaco ATLAS User’s Manual, pp 1-1715, 2015.

Singh, K.J., Sarkar, S.K., 2011. An Effective Modeling Approach for High Efficient Solar Cell Using Virtual Wafer Fabrication Tools. Journal of Nano- and Electronic Physics. vol. 3, issue 1,pp. 792, 2011.

C. Lin, M. Tan, C. Tsai, K.Y. Chuang, T.S. Lay, Numerical Study of Quantum-Dot-Embedded Solar Cells IEEE J. Sel. Top. Quantum Electron. Vol. 19, PP. 1–10. 2013
https://doi.org/10.1109/jstqe.2013.2244563

A. Aissat , F. Benyettou, and J. P. Vilcot. Modeling and simulation of InGaN/GaN quantum dots solar cell. J. AIP. Conf. Proc. Vol. 1758(1), pp. 030014-1–030014-7, doi:10.1063/ 1.4959410, 2016.
https://doi.org/10.1063/1.4959410

J. Kennedy and R. Eberhart, Particle swarm optimization, in Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942–1948. 1995.
https://doi.org/10.1109/icnn.1995.488968

Y. Shi and R. Eberhart, A modified particle swarm optimizer, in Proceedings. IEEE World Congress on Computational Intelligence, pp. 69–73, 1998.
https://doi.org/10.1109/icec.1998.699146

Y. Shi and R. Eberhart, Parameter selection in particle swarm optimization, in Evolutionary Programming VII SE - 57,vol. 1447, V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben, Eds. Springer Berlin Heidelberg, pp. 591–600. 1998
https://doi.org/10.1007/bfb0040810

Y. Shi and R. C. Eberhart, Empirical study of particle swarm optimization, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, pp. 1945–1950, 1999.
https://doi.org/10.1109/cec.1999.785511

X. Hu, Y. Shi, and R. Eberhart, Recent advances in particle swarm, in Congress on Evolutionary Computation, 2004. CEC2004, vol. 1, pp. 90–97, 2004.
https://doi.org/10.1109/cec.2004.1330842

A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, Self Organizing Hierarchical Particle Swarm Optimizer With TimeVarying Acceleration Coefficients, IEEE Transactions On Evolutionary Computation, vol. 8, no. 3, pp. 240–255, 2004.
https://doi.org/10.1109/tevc.2004.826071

A. T. Al-Awami, A. Zerguine, L. Cheded, A. Zidouri, and W. Saif, A new modified particle swarm optimization algorithm for adaptive equalization, Digital Signal Processing, vol. 21, no. 2, pp. 195–207, Mar. 2011.
https://doi.org/10.1016/j.dsp.2010.05.001

Y. A. N. Chun-man, G. U. O. Bao-long, and W. U. Xian-xiang, Empirical Study of the Inertia Weight Particle Swarm Optimization with Constraint Factor, International Journal of Soft Computing And Software Engineering, vol. 2, no. 2, pp. 1– 8,2012.

Liang, X., Yin, Z., Wang, Y., Sun, Q.,. Impulse engine ignition algorithm based on genetic particle swarm optimization, in: International Conference in Swarm Intelligence. Springer, pp. 35–43. 2013.
https://doi.org/10.1007/978-3-642-38715-9_5

H. Wei, J. Cong, X. Lingyun, and S. Deyun, Extracting solar cell model parameters based on chaos particle swarm algorithm, in 2011 International Conference on Electric Information and Control Engineering (ICEICE), pp. 398–402, 2011.
https://doi.org/10.1109/iceice.2011.5777246

Khare, A., Rangnekar, S., A review of particle swarm optimization and its applications in solar photovoltaic system. Appl. Soft Comput. vol. 13, pp. 2997–3006, 2013.
https://doi.org/10.1016/j.asoc.2012.11.033

M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita and E. Maruyama, 24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer IEEE J. of photovoltaics , Vol. 4, No. 1, 2014.
https://doi.org/10.1109/jphotov.2013.2282737

K. Masuko, M. Shigematsu, T. Hashiguchi Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell, IEEE Journal of Photovoltaics. Volume: 4, Issue: 6, Nov. 2014.
https://doi.org/10.1109/jphotov.2014.2352151

B. M. Kayes, N. Hui, R. Twist et al., 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination, in 2011 37th IEEE Photovoltaic Specialists Conference, pp. 000004–000008, Seattle, WA, USA, 2011.
https://doi.org/10.1109/pvsc.2011.6185831

S. Moon, K. Kim, Y. Kim, J. Heo, and J. Lee, Highly efficient single-junction GaAs thin-film solar cell on flexible substrate, Scientific Reports, vol. 6, article 30107, 2016.
https://doi.org/10.1038/srep30107

R. Ramaprabha , B. Mathur Soft computing optimisation techniques for solar photovoltaic arrays, ARPN Journal of Engineering and Applied Sciences, Vol. 6, No. 10, pp. 70-75, 2011.

C. Slobodan, T.Stanko, Automated design of multi junction solar cells by genetic approach: Reaching >50% the efficiency target, J. Solar Energy Materials and Solar Cells, Vol. 181, pp 30-37, 2017.
https://doi.org/10.1016/j.solmat.2017.12.002

Mousa, A., Abdel Aleem, S., Ibrahim, A., Mathematical Analysis of Maximum Power Points and Currents Based Maximum Power Point Tracking in Solar Photovoltaic System: a Solar Powered Water Pump Application, (2016) International Review of Electrical Engineering (IREE), 11 (1), pp. 97-108.
https://doi.org/10.15866/iree.v11i1.8137

Prakash, S., Dhal, P., A Review: Solar Tracking System with Grid Used in Kurnool Ultra Mega Solar Park, (2019) International Review of Electrical Engineering (IREE), 14 (3), pp. 195-204.
https://doi.org/10.15866/iree.v14i3.17162

Gunantara, N., Sudiarta, P., Antara, I., Multi-Criteria Weights on Ad Hoc Networks Using Particle Swarm Optimization for Optimal Path Pairs, (2018) International Review of Electrical Engineering (IREE), 13 (1), pp. 15-22.
https://doi.org/10.15866/iree.v13i1.14082


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize