Open Access Open Access  Restricted Access Subscription or Fee Access

Electrical Characteristics of Atmospheric Air Corona Plasma by Multi-pin Electrodes


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v14i3.16726

Abstract


Recently, non-thermal plasma has been widely applied in many fields related to plasma advanced chemical reaction. However, large-scale production of non-thermal plasma is difficult to be achieved in the atmospheric environment. Among other plasma models, corona discharge generated by multi-pin electrodes is one of the good candidates for a massive atmospheric non-thermal plasma production. This paper reports an experimental study on the electrical characteristics of non-thermal atmospheric multi-pin air corona discharges. A plasmamodel composed of multi-pin anodes with 1, 5, 15, and 64 pins, and a planar counter electrodehas been developed. The gap between the electrodes has been 12 mm. Stable streamer glow corona plasma has been generated and observed at the dc-supplied voltage of 14–18 kV. The influences of the electrode number and the supplied voltage on the electrical characteristics of the plasma have been investigated and discussed. The plasma has been found out to be in a self-pulsing discharge mode under every examined experimental condition. The pulsing frequency has increased when the supplied source voltage increased. However, non-periodical pulsing could be observed in the multi-pin electrode cases owing to the multi-discharges from each pin anode. At the same supplied voltage, a greater number of pin electrodes could be sustained with the lower voltage in order to obtain a larger average discharge current. Moreover, more uniform plasma could be achieved, and the transition from glow to arc discharge could be extended due to an interaction of electric field and equipotential lines between the adjacent pin electrodes.
Copyright © 2019 Praise Worthy Prize - All rights reserved.

Keywords


Non-Thermal Plasma; Atmospheric Plasma; Positive Corona Discharge; Air Plasma; Streamer Glow Discharge; Multi-Pins; Pin To Plane; Non-Uniform Electric Field; Direct Current; High Voltage

Full Text:

PDF


References


A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, R.F. Hicks, The atmospheric-pressure plasma jet: A review and comparison to other plasma sources, IEEE transactions on plasma science, vol. 26 no. 6, December 1998, pp. 1685–1694.
https://doi.org/10.1109/27.747887

Arasaratnam, P., Sivakumaran, K., Strength of Plasma Cut Welded H-Shaped Steel Columns, (2017) International Journal of Earthquake Engineering and Hazard Mitigation (IREHM), 5 (1), pp. 28-39.

H. Tanaka, K. Nakamura, M. Mizuno, K. Ishikawa, K. Takeda, H. Kajiyama, F. Utsumi, F. Kikkawa, M. Hori, Non-thermal atmospheric pressure plasma activates lactate in Ringer’s solution for anti-tumor effects, Scientific reports (SR), vol. 6, November 2016, pp.36282.
https://doi.org/10.1038/srep36282

S. Hasse, T.D. Tran, O. Hahn, S. Kindler, H.R. Metelmann, T. von Woedtke, K. Masur, Induction of proliferation of basal epidermal keratinocytes by cold atmospheric‐pressure plasma, Clinical and experimental dermatology (CED), vol. 41 no. 2, March 2016, pp.202-209.
https://doi.org/10.1111/ced.12735

S. Mirpour, S. Piroozmand, N. Soleimani, N.J. Faharani, H. Ghomi, H.F. Eskandari, A.M. Sharifi, S. Mirpour, M. Eftekhari, M. Nikkhah, Utilizing the micron sized non-thermal atmospheric pressure plasma inside the animal body for the tumor treatment application, Scientific reports (SR), vol. 6, July 2016, pp. 29048.
https://doi.org/10.1038/srep29048

M. Ueda, C. Silva, A. Marcondes, H. Reuther, G.D. Souza, Recent experiments on plasma immersion ion implantation (and deposition) using discharges inside metal tubes, Surface and Coatings Technology (SCT), vol. 355, December 2018, pp. 98–110.
https://doi.org/10.1016/j.surfcoat.2018.05.009

P. Sánchez-Cid, C. Jaramillo-Páez, J. Navío, A. Martín-Gómez, M. Hidalgo, Coupling of Ag2CO3 to an optimized ZnO photocatalyst: Advantages vs. disadvantages, Journal of Photochemistry and Photobiology A: Chemistry (JPPA), vol. 369, January 2019, pp. 119–132.
https://doi.org/10.1016/j.jphotochem.2018.10.024

G. Sribala, D. Michiels, C. Leys, K.M.V. Geem, G.B. Marin, A. Nikiforov, Methane reforming to valuable products by an atmospheric pressure direct current discharge, Journal of Cleaner Production (JCP), vol. 209, February 2019, pp. 655–664.
https://doi.org/10.1016/j.jclepro.2018.10.203

D. Turnbull, S.W. Bahk, I.A. Begishev, R. Boni, J. Bromage, S. Bucht, A. Davies, P. Franke, D. Haberberger, J. Katz, T. J. Kessler, A. L. Milder, J. P. Palastro, J. L. Shaw, D. H. Froula, Flying focus and its application to plasma-based laser amplifiers, Plasma Physics and Controlled Fusion, vol. 61 no. 1, November 2018, pp. 014022.
https://doi.org/10.1088/1361-6587/aada63

V.I. Deemidov, M.E. Koepke, I.P. Kurlyandskaya, M.A. Malkov, Feasibility, strategy, methodology, and analysis of probe measurements in plasma under high gas pressure, Journal of Physics: Conference Series (JPCS), vol. 958 no. 1, February 2018, pp. 012003.
https://doi.org/10.1088/1742-6596/958/1/012003

A.P. Ayres, P.H. Freitas, J. De Munck, A. Vananroye, C. Clasen, C.D.S. Dias, M. Giannini, B. Van Meerbeek, Benefits of Nonthermal Atmospheric Plasma Treatment on Dentin Adhesion, Operative dentistry, vol. 43 no. 6, November 2018, pp. E288-E299.
https://doi.org/10.2341/17-123-l

S. Wu, F. Wu, X. Liu, W. Mao, C. Zhang, A Bipolar DC-Driven Touchable Helium Plasma Jet Operated in Self-Pulsed Mode, IEEE Transactions on Plasma Science, vol. 46 no. 12, September 2018, pp. 4091–4098.
https://doi.org/10.1109/tps.2018.2868234

J. Li, Q. Xiang, X. Liu, T. Ding, X. Zhang, Y. Zhai, Y. Bai, Inactivation of soybean trypsin inhibitor by dielectric-barrier discharge (DBD) plasma, Food Chemistry, vol. 232, October 2017, pp. 515–522.
https://doi.org/10.1016/j.foodchem.2017.03.167

H. Chutia, D. Kalita, C.L. Mahanta, N. Ojah, A.J. Choudhury, Kinetics of inactivation of peroxidase and polyphenol oxidase in tender coconut water by dielectric barrier discharge plasma, LWT-Food Science and Technology, vol. 101, March 2018, pp. 625–629.
https://doi.org/10.1016/j.lwt.2018.11.071

Morent, R., De Geyter, N., Leys, C., DBD Treatment of Textiles, (2016) International Review of Chemical Engineering (IRECHE), 8 (4), pp. 76-82.

D.Y. Kim, S.J. Kim, H.M. Joh, T.H. Chung, Characterization of an atmospheric pressure plasma jet array and its application to cancer cell treatment using plasma activated medium, Physics of Plasmas, vol. 25 no. 7, July 2018, pp. 073505.
https://doi.org/10.1063/1.5037249

S. Razavizadeh, H. Ghomi, A. Sobota, Atmospheric pressure plasma jet in controlled atmosphere: electric fields and propagation dynamics, Plasma Sources Science and Technology (PSST), vol. 27 no. 7, July 2018, pp. 075016.
https://doi.org/10.1088/1361-6595/aacd73

Z.M. Al-Hamouz, Corona power loss on bundled conductors: Experimental and computational results, IEEE Transactions on Industry Applications, vol. 35 no. 6, November 1999, pp. 1277-1283.
https://doi.org/10.1109/28.806039

E.I. Bousiou, P.N. Mikropoulos, V.N. Zagkanas, Experimental investigation of negative DC corona on conductor bundles: A comparison with positive corona, in 2017 52nd International Universities Power Engineering Conference (UPEC), August 28-31, 2017, Heraklion, Greece.
https://doi.org/10.1109/upec.2017.8231874

A. Mosallanejad, H. Taghvaei, S.M. Mirsoleimani-Azizi, A. Mohammadi, M.R. Rahimpour, Plasma upgrading of 4methylanisole: A novel approach for hydrodeoxygenation of bio oil without using a hydrogen source, Chemical Engineering Research and Design (ChERD), vol. 121, May 2017, pp. 113–124.
https://doi.org/10.1016/j.cherd.2017.03.011

L. Liu, M. Becerra, An efficient model to simulate stable glow corona discharges and their transition into streamers, Journal of Physics D: Applied Physics (JPDAP), vol. 50 no. 10, February 2017, pp. 105204.
https://doi.org/10.1088/1361-6463/aa5a34

E.I. Bousiou, P.N. Mikropoulos, V.N. Zagkanas, Application of the critical volume theory to estimating impulse corona characteristics in the coaxial cylindrical electrode arrangement, in 2017 52nd International Universities Power Engineering Conference (UPEC), August 28-31, 2017, Heraklion, Greece.
https://doi.org/10.1109/upec.2017.8231875

A. Reguig, L. Dascalescu, P. Dordizadeh, A. Bendaoud, Corona discharge generated by dual-type electrode fixed between parallel grounded strips, IEEE Transactions on Industry Applications, vol. 53 no. 2, December 2016, pp. 1459-1465.
https://doi.org/10.1109/tia.2016.2637326

A.J. Conesa, M. Sánchez, M. León, A. Cabrera, Some geometrical and electrical aspects on the wire-to-cylinder corona discharge, Journal of Electrostatics, vol. 100, July 2019, pp. 103355.
https://doi.org/10.1016/j.elstat.2019.103355

P. Dordizadeh, K. Adamiak, G.P. Castle, Study of the impact of photoionization on negative and positive needle-plane corona discharge in atmospheric air, Plasma Sources Science and Technology (PSST), vol. 25 no. 6, October 2016, pp. 065009.
https://doi.org/10.1088/0963-0252/25/6/065009

T. Zhu, S. Wang, Z. Guo, S. Wang, N. Zhang, Study on the Corona Discharge Ionized Field of UHVdc Based on Particle-in-Cell Iterative Method, IEEE Transactions on Magnetics, vol. 55 no. 6, March 2019, pp. 1-4.
https://doi.org/10.1109/tmag.2019.2897224

M. Liu, J. Tang, Q. Yao, Y. Miao, Development processes of positive and negative DC corona under needle-plate electrode in air, in 2016 IEEE International Conference on High Voltage Engineering and Application (ICHVE), September 19-22, 2016, Chengdu, China.
https://doi.org/10.1109/ichve.2016.7800827

J.R. Riba, A. Morosini, F. Capelli, Comparative study of AC and positive and negative DC visual corona for sphere-plane gaps in atmospheric air, Energies, vol. 11 no. 10, October 2018, pp. 2671.
https://doi.org/10.3390/en11102671

S.I. Wais, D.D. Giliyana, Sphere-to-Plane Electrodes Configuration of Positive and Negative Plasma Corona Discharge, American Journal of Modern Physics (ALMP), vol. 2, 2013, pp. 46-52.
https://doi.org/10.11648/j.ajmp.20130202.12

J. Chen, J.H. Davidson, Ozone production in the positive DC corona discharge: Model and comparison to experiments, Plasma chemistry and plasma processing, vol. 22, December 2002, pp. 495–522.

Y.H. Kim, S.H. Hong, Two-dimensional simulation images of pulsed corona discharges in a wire-plate reactor, IEEE Transactions on Plasma Science, vol. 30 no. 1, August 2002, pp. 168–169.
https://doi.org/10.1109/tps.2002.1003977

Y. Zhang, L. Liu, Y. Chen, J. Ouyang, Characteristics of ionic wind in needle-to-ring corona discharge, Journal of Electrostatics, vol. 74, April 2015, pp. 15–20.
https://doi.org/10.1016/j.elstat.2014.12.008

M. Goldman, R. Sigmond, Corona and Insulation, IEEE Transactions on Electrical Insulation, vol. 2, April 1982, pp. 90-105.
https://doi.org/10.1109/tei.1982.298543

D.S. Antao, D.A. Staack, A. Fridman, B. Farouk, Atmospheric pressure corona discharges: operating regimes and potential applications, Plasma Sources Science and Technology (PSST), vol. 18, June 2009, pp. 1–11.
https://doi.org/10.1088/0963-0252/18/3/035016

T.N. Giao, J.B. Jordan, Modes of corona discharges in air, IEEE Transactions on Power Apparatus and Systems, vol. 5, May 1968, pp. 1207-1215.
https://doi.org/10.1109/tpas.1968.292211

T.M.P. Briels, J. Kos, G.J.J. Winands, E.M.V. Veldhuizen, U. Ebert, Positive and negative streamers in ambient air: measuring diameter, velocity and dissipated energy, Journal of Physics D: Applied Physics (JPDAP), vol. 41 no. 23, November 2008, pp. 234004.
https://doi.org/10.1088/0022-3727/41/23/234004

V.C. Louzi, J.S. de Carvalho Campos, Corona treatment applied to synthetic polymeric monofilaments (PP, PET, and PA-6), Surfaces and Interfaces, vol. 14, March 2019, pp. 98-107.
https://doi.org/10.1016/j.surfin.2018.12.005

J.S. Chang, P.A. Lawless, T. Yamamoto, Corona discharge processes, IEEE Transactions on Plasma Science, vol. 19 no. 6, December 1991, pp. 1152–1166.
https://doi.org/10.1109/27.125038

T. Ma, J. Chen, J. Liu, H. Lu, C. Du, F. Zhong, Promotion of toluene degradation in negative DC corona discharge by magnetic field, Journal of Physics D: Applied Physics (JPDAP), vol. 51 no. 42, October 2018, pp. 425203.
https://doi.org/10.1088/1361-6463/aadcd2

S. Jung, J. Fang, T.S. Chadha, P. Biswas, Atmospheric pressure plasma corona enhanced by photoionizer for degradation of VOCs, Journal of Physics D: Applied Physics (JPDAP), vol. 51 no. 44, March 2018, pp. 445206.
https://doi.org/10.1088/1361-6463/aae133

Q. Gao, C. Niu, X. Wang, A. Yang, Y. Wu, A.B. Murphy, M. Rong, X. Fu, J. Liu, Y. Xu, Chemical kinetic modeling and experimental study of SF6 decomposition byproducts in 50 Hz ac point-plane corona discharges, Journal of Physics D: Applied Physics (JPDAP), vol. 51 no. 29, February 2018, pp. 295202.
https://doi.org/10.1088/1361-6463/aacccd

P. Xiao, D. Staack, Microbubble generation by microplasma in water, Journal of Physics D: Applied Physics (JPDAP), vol. 47 no. 35, August 2014, pp. 355203.
https://doi.org/10.1088/0022-3727/47/35/355203

N. Khamsen, A. Akkarachanchainon, N. Teerakawanich, S. Srisonphan, Organic and Bio Material Surface Modification Via Corona Discharge Induced Atmospheric-cold Plasma, Procedia Computer Science, vol. 86, January 2016, pp. 325–328.
https://doi.org/10.1016/j.procs.2016.05.088

M. Goldman, A. Goldman, R.S. Sigmond, The corona discharge, its properties and specific uses, Pure and Applied Chemistry (PAC), vol. 57 no. 9, January 1985, pp. 1353-1362.
https://doi.org/10.1351/pac198557091353

K. Matra, Atmospheric Non-Thermal Argon–Oxygen Plasma for Sunflower Seedling GrowthImprovement, Japanese Journal of Applied Physics (JJAP), vol. 57 no. 1S, November 2017, pp. 01AG03.
https://doi.org/10.7567/jjap.57.01ag03

Y. Soda, T.K. Dama, T. Oda, Characteristics of corona discharge from multi-pin electrodes, in 2012 IEEE Industry Applications Society Annual Meeting, October 7-11, 2012, Las Vegas, Nevada, United States.
https://doi.org/10.1109/ias.2012.6373979

R.S. Sigmond, The residual streamer channel: Return strokes and secondary streamers, Journal of applied physics (JAP), vol. 56 no. 5, Sebtember 1984, pp. 1355-1370.
https://doi.org/10.1063/1.334126

D. Raouti, S. Flazi, D. Benyoucef, Modeling and Identification of Electrical Parameters of Positive DC Point-to-Plane Corona Discharge in Dry Air Using RLS Method, IEEE Transactions on Plasma Science, vol. 44 no. 7, June 2016, pp. 1144-1149.
https://doi.org/10.1109/tps.2016.2577634

B. Adamczyk, B. Florkowska, P. Pietrzak, Modelling of electric field distribution for partial discharges in air, Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej, 2015, pp. 9-12.

B. Florkowska, R. Wlodek, Pulse height analysis of partial discharges in air, IEEE Transactions on Electrical Insulation, vol. 28 no. 6, December 1993, pp. 932-940.
https://doi.org/10.1109/14.249366

P. Bunme, N. Khamsen, V. Kasemsuwan, K. Jitkajornwanich, A. Pichetjamroen, N. Teerakawanich, S. Srisonphan, Polarity effect of pulsed corona discharge plasma on seed surface modification, in 2017 International Electrical Engineering Congress (iEECON), March 8-10, 2017, Pattaya, Thailand.
https://doi.org/10.1109/ieecon.2017.8075754

N. Khamsen, D. Onwimol, N. Teerakawanich, S. Dechanupaprittha, W. Kanokbannakorn, K. Hongesombut, S. Srisonphan, Rice (Oryza sativa L.) seed sterilization and germination enhancement via atmospheric hybrid nonthermal discharge plasma, ACS applied materials & interfaces, vol. 8 no. 30, July 2016, pp. 19268-19275.
https://doi.org/10.1021/acsami.6b04555

P. Sattari, G.S.P. Castle, K. Adamiak, FEM–FCT-based dynamic simulation of corona discharge in point–plane configuration, IEEE Transactions on Industry Applications, vol. 46 no. 5, July 2010, pp. 1699-1706.
https://doi.org/10.1109/tia.2010.2057493

K. Matra, H. Furuta, A. Hatta, Current-voltage characteristics of dc discharge in micro gas jet injected into vacuum environment, Journal of Physics: Conference Series (JPCS), vol. 441 no. 1, 2013, pp. 012021.
https://doi.org/10.1088/1742-6596/441/1/012021

M. Khaled, Computation of breakdown phenomena in nonuniform air gaps (Doctoral dissertation, ETH Zurich, 1975).

E. Kuffel, M. Abdullah, High-voltage engineering (Oxford: Pergamon Press, 1970).

H. Taghvaei, M.R. Rahimpour, P. Bruggeman, Catalytic hydrodeoxygenation of anisole over nickel supported on plasma treated alumina-silica mixed oxides, RSC Advances, vol. 7 no. 49, 2017, pp. 30990-30998.
https://doi.org/10.1039/c7ra02594g

R. Morrow, The theory of positive glow corona, Journal of Physics D: Applied Physics (JPDAP), vol. 30 no. 22, November 1997, pp. 3099–3114.
https://doi.org/10.1088/0022-3727/30/22/008

J.M. Meek, J.D. Craggs, Electrical Breakdown of Gases, (Clarendon Press Oxford, U.K., 1953).

R. Ono, Y. Nakagawa, T. Oda, Effect of pulse width on the production of radicals and excited species in a pulsed positive corona discharge, Journal of Physics D: Applied Physics (JPDAP), vol. 44 no. 48, November 2011, pp. 485201.
https://doi.org/10.1088/0022-3727/44/48/485201

L. Liu, M. Becerra, On the transition from stable positive glow corona to streamers, Journal of Physics D: Applied Physics (JPDAP), vol. 49 no. 22, May 2016, pp. 225202.
https://doi.org/10.1088/0022-3727/49/22/225202

E. Bogdanov, V.I. Demidov, I.D. Kaganovich, M.E. Koepke, A.A. Kudryavtsev, Modeling a short dc discharge with thermionic cathode and auxiliary anode, Physics of Plasmas, vol. 20 no. 10, October 2013, pp. 101605.
https://doi.org/10.1063/1.4823464

K. Matra, Y. Mizobuchi, H. Furuta, A. Hatta, Local sputter etching by micro plasma jet in SEM, Vacuum, vol. 87, January 2013, pp. 132-135.
https://doi.org/10.1016/j.vacuum.2012.03.011

D. Schröder, S. Burhenn, D. Kirchheim, V.S.V.D. Gathen, Enhanced oxygen dissociation in a propagating constricted discharge formed in a self-pulsing atmospheric pressure microplasma jet, Journal of Physics D: Applied Physics (JPDAP), vol. 46 no. 46, October 2013, pp. 464003.
https://doi.org/10.1088/0022-3727/46/46/464003

K. Yanallah, F. Pontiga, A semi-analytical stationary model of a point-to-plane corona discharge, Plasma Sources Science and Technology (PSST), vol. 21 no. 4, February 2012, pp. 045007.
https://doi.org/10.1088/0963-0252/21/4/045007

G.V. Naidis, On streamer interaction in a pulsed positive corona discharge, Journal of Physics D: Applied Physics (JPDAP), vol. 29 no. 3, March 1996, pp. 779–783.
https://doi.org/10.1088/0022-3727/29/3/039

M. Magureanu, N.B. Mandache, Investigation of a Pulsed Positive Corona in Multipoint-to-Plane Configuration (National INST for Laser Plasma and Radiation Physics Bucharest, Romania, 2003).

T.E. Allibone, J.C. Saunderson, Corona at very high direct voltages. VI corona in rod/plane gaps, in Proceedings of the 16th International Symposium on High Voltage Engineering (ISH), August 28 - September 1, 1989, New Orleans, United States.

M. Abdel-Salam, H. Ziedan, S. Kamal El-Deen, Performance of positive corona in tree-shaped multi-needle-to-plane configurations, International Journal of Plasma Environmental Science and Technology (IJPEST), vol. 9 no. 1, 2015, pp. 51-61.

E.D. Fylladitakis, A.X. Moronis, M.P. Theodoridis, A mathematical model for determining an electrohydrodynamic accelerator’s monopolar flow limit during positive corona discharge, IEEE Transactions on Plasma Science, vol. 45 no. 3, February 2017, pp. 432-440.
https://doi.org/10.1109/tps.2017.2663778

K. Sekimoto, and M. Takayama, Negative ion formation and evolution in atmospheric pressure corona discharges between point-to-plane electrodes with arbitrary needle angle, The European Physical Journal D (EPJ D), vol. 60 no. 3, December 2010, pp. 589-599.
https://doi.org/10.1140/epjd/e2010-10449-7

J. Kuffel, P. Kuffel, High voltage engineering fundamentals (Elsevier, 2000, 281-366).
https://doi.org/10.1016/b978-075063634-6/50006-x


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize