Open Access Open Access  Restricted Access Subscription or Fee Access

A Method of Optimizing the Rule Base in the Sugeno Fuzzy Inference System Using Fuzzy Cluster Analysis


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v15i4.16545

Abstract


This paper develops a method of optimizing the rule base in the Sugeno-type fuzzy inference system using fuzzy cluster analysis for the design problems of control systems for complex technical objects. A hybrid control model with sequential interactions of classical and fuzzy controllers is used to validate the results. In the developed adaptive system of neuro-fuzzy inference, the rule base for the fuzzy controller is automatically formed based on the knowledge about the object obtained when it has been controlled by the classical controller, which excludes an expert's participation in the formation of the rule base. The optimization problem is solved using the method of grouping the values of the input and output signals in order to reduce the number of rules and to increase the speed of the control system of the technical object. The FCM clustering algorithm is used to group the values. As a result of the algorithm operation, not all of the set input actions arrive at the fuzzy controller input. Only cluster centers determined by fuzzy sets arrive, and the boundaries between clusters are also fuzzy. The effectiveness of the proposed grouping method for ensuring the effective control of a complex technical object under conditions of uncertainty is proved.
Copyright © 2020 Praise Worthy Prize - All rights reserved.

Keywords


Control System; Fuzzy Clustering; Fuzzy C-Means Algorithm (FCM); Fuzzy Inference System; Hybrid Network; Rule Base

Full Text:

PDF


References


Demidova G.L., Lukichev D.V., Controllers based on fuzzy logic in control systems for technical objects [Regulyatory na osnove nechetkoi logiki v sistemah upravleniya tehnicheskimi ob’ektami]. Saint-Petersburg: University of ITMO, (2017). (in Russian).

Vasil'ev V.I., Il'jasov B.G., Intelligent control systems. Theory and practice. [Intellektual'nye sistemy upravlenija. Teorija i praktika]. Moscow, (2009). (in Russian).

Gostev V.I., Designing fuzzy controllers for automatic control systems, [Proektirovanie nechetkikh regulyatorov dlya sistem avtomaticheskogo upravleniya]. Saint-Petersburg: BHV-Peterburg, (2011). (in Russian).

Demidova G.L., Kuzin А.Yu., Lukichev D.V. Application features of fuzzy controllers on example of DC motor speed control, (2016) Scientific and Technical Journal of Information Technologies, Mechanics and Optics, vol. 16, №. 5, pp. 872–878. (in Russian).
https://doi.org/10.17586/2226-1494-2016-16-5-872-878

Leonenkov A.V., Fuzzy Modeling with MATLAB and FuzzyTECH [Nechetkoe modelirovanie v srede MATLAB i fuzzyTECH]. Saint-Petersburg: BHV-Petersburg, (2005). (in Russian).

Shtovba S.D., Design of fuzzy systems by means of MATLAB. [Proektirovanie nechetkih system sredstvami MATLAB]. Moscow: Hot line-Telecom. (2007). (in Russian).

Kolesnikov A.V., Hybrid Intelligent Systems: Theory and Technology of Development [Gibridnye intellektual’nye sistemy: teoriya I tehnologiya razrabotki]. Saint-Petersburg: Publishing house SPbSTU, (2001). (in Russian).

Gonzalez-Carrato R.R.H. Wind farm monitoring using Mahalanobis distance and fuzzy clustering, (2018) Renewable Energy 123, pp. 526-540.
https://doi.org/10.1016/j.renene.2018.02.097

Chaghari A., Mohammad-Reza F.D., Mohammad-Ali B. Fuzzy clustering based on Forest optimization algorithm. Journal of King Saud University, (2018) Computer and Information Sciences, 30, pp. 25-32.
https://doi.org/10.1016/j.jksuci.2016.09.005

Qun R., Pascal B. Discrete-time parallel robot motion control using adaptive neuro-fuzzy inference system based on improved subtractive clustering, (2016) 2016 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2016. Vancouver; Canada.
https://doi.org/10.1109/fuzz-ieee.2016.7737797

Polkovnikova N.A., Kureichik V.М., Neural network technologies, fuzzy clustering and genetic algorithms in the VLSI expert system. [Neirosetevye tehnologii, nechetkaya klasterizaciya I geneticheskie algoritmy v ekspertnoi sisteme SBIS], (2014) Proceedings of the Southern Federal University. Engineering Sciences, №. 7(156), pp. 7-15. (in Russian).

Salgado P., Igrejas G. Probabilistic clustering algorithms for fuzzy rules decomposition, (2004) 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), pp. 115-120.
https://doi.org/10.1109/icsmc.2004.1400683

Hua X., Pedrycza W., Castillo O., Melin P. Fuzzy rule-based models with interactive rules and their granular generalization, (2017) Fuzzy Sets and Systems, Volume 307, 1-28.
https://doi.org/10.1016/j.fss.2016.03.005

Komartsova L.G., Kovalev I.V., Kadnikov D.S, Minimizing fuzzy rule bases in intelligent systems. [Minimizaciya nechetkih baz pravil v intellektual’nyh sistemah]. Minsk: A.N. Varaksin. (2009). (in Russian).
Available at: http://elib.bsu.by/handle/123456789/92822

Sergienko M.A., Methods of designing a fuzzy knowledge base // Bulletin of VSU, Series: System analysis and information technologies [Metody proektirovaniya nechetkoi bazy znaniy, (2008) Vestnik VGU, seriya: Sistemnyi analiz i informatsionnye tehnologii.], №.2. UDC 681.3, pp. 67-71. (in Russian).

Soldatova O.P., Shepelev Yu.M., An Algoritm of rule base minimization for Takagi-Sugeno-Kang fuzzy neural network [Algoritm minimizacii bazy pravil nechetkoi neironnoi seti Takagi-Sugeno-Kanga], (2017) X International Scientific Conference European Research, pp. 46-49. (in Russian).
https://doi.org/10.32657/10356/50807

Ptashko E.A., Uhobotov V.I., Automatic generation of fuzzy rules bases for controlling a mobile robot with a crawler chassis based on numerical data, (2017) Bulletin of SUSU Ser. Calc. Math. Inform. [Avtomaticheskaya generaciya baz pravil dlya upravleniya mobil’nym robotom s gusenichnym shassi na osnove chislovyh dannyh // Vestnik YuUrGU. Ser. Vych. matem. inform.], volume 6, issue 3, pp. 60-72. (in Russian).

Kudinov Y.I., Kolesnikov V.A., Pashchenko F.F., Pashchenko A.F., Papic L. Optimization of fuzzy PID controller’s parameters, (2017) XIIth International Symposium «Intelligent Systems», INTELS’16, 5-7 October 2016, Moscow, Russia. Procedia Computer Science, 103, pp. 618 – 622.
https://doi.org/10.1016/j.procs.2017.01.086

Caraveo C., Valdez F., Castillo O. Optimization of fuzzy controller design using a new bee colony algorithm with fuzzy dynamic parameter adaptation, (2016) Applied Soft Computing, 43, pp. 131–142.
https://doi.org/10.1016/j.asoc.2016.02.033

Coelho L.S., Pessoa M.W., Mariani V.C., Reynoso-Meza G. Fuzzy Inference System Approach Using Clustering and Differential Evolution Optimization Applied to Identification of a Twin Rotor System, (2017) IFAC PapersOnLine 50-1, pp. 13102-13107.
https://doi.org/10.1016/j.ifacol.2017.08.2162

Dettori S., Iannino V., Colla V., Signorini A. A fuzzy logic-based tuning approach of PID control for steam turbines for solar applications, (2017) The 8th International Conference on Applied Energy – ICAE2016, Energy Procedia, 105, pp. 480-485.
https://doi.org/10.1016/j.egypro.2017.03.344

Jiang W., Jiang X. Design of an Intelligent Temperature Control System Based on the Fuzzy Self-tuning PID, (2012) International Symposium on Safety Science and Engineering in China, 2012 (ISSSE-2012), Procedia Engineering 43, pp. 307-311.
https://doi.org/10.1016/j.proeng.2012.08.053

Manenti F., Rossi F., Goryunov A.G., Dyadik V.F., Kozin K.A., Nadezhdin I.S., Mikhalevich S.S. Fuzzy adaptive control system of a non-stationary plant with closed-loop passive identifier, (2015) Resource-Efficient Technologies, 1, pp. 10-18.
https://doi.org/10.1016/j.reffit.2015.07.001

Kharola A., Patil P., Raiwani S., Rajput D. A comparison study for control and stabilisation of inverted pendulum on inclined surface (IPIS) using PID and fuzzy controllers, (2016) Perspectives in Science, 8, pp.187-190.
https://doi.org/10.1016/j.pisc.2016.03.016

Nuchkrua T., Leephakpreeda T. Fuzzy Self-Tuning PID Control of Hydrogen-Driven Pneumatic Artificial Muscle Actuator, (2013) Journal of Bionic Engineering, Vol. 10, pp. 329-340.
https://doi.org/10.1016/s1672-6529(13)60228-0

Dequan S., Guili G., Zhiwei G., Peng X. Application of expert fuzzy PID method for temperature control of heating furnace, (2012) Procedia Engineering, Vol. 29, pp. 257-261.
https://doi.org/10.1016/j.proeng.2011.12.703

Yang Z., Zhang J., Chen Z., Zhang B. Semi-active control of high-speed trains based on fuzzy PID control, (2011) Procedia Engineering, Vol.15, pp. 521-525.
https://doi.org/10.1016/j.proeng.2011.08.099

Mann G.K.I., Gosine R.G. Three-dimensional min–max-gravity based fuzzy PID inference analysis and tuning, (2005) Fuzzy Sets and Systems, Vol. 156, pp. 300-323.
https://doi.org/10.1016/j.fss.2005.05.008

Wu Y., Jiang H., Zou M. The Research on Fuzzy PID Control of the Permanent Magnet Linear Synchronous Motor, (2012) Physics Procedia 24, pp. 1311-1318.
https://doi.org/10.1016/j.phpro.2012.02.196

Abbasi E., Mahjoob M. J., Yazdanpanah R. Controlling of Quadrotor UAV Using a Fuzzy System for Tuning the PID Gains in Hovering Mode, (2013) Fourth International Conference on Advances in Computer Engineering – ACE 2013, (2013) Int. j. adv. robot. syst., Vol. 10, pp. 380.

Ou K., Wang Y-X., Li Z-Z., Shen Y-D., Xuan D-J. Feedforward fuzzy-PID control for air flow regulation of PEM fuel cell system, (2015) International journal of hydrogen energy, Volume 40, Issue 35, pp. 11686-11695.
https://doi.org/10.1016/j.ijhydene.2015.04.080

Beirami H., Shabestari A.Z., Zerafat M.M. Optimal PID plus fuzzy controller design for a PEM fuel cell air feed system using the self-adaptive differential evolution algorithm, (2015) International journal of hydrogen energy, Volume 40, Issue 30, pp. 9422–9434.
https://doi.org/10.1016/j.ijhydene.2015.05.114

Savran A. A multivariable predictive fuzzy PID control system, (2013) Applied Soft Computing, vol. 13, pp. 2658-2667.
https://doi.org/10.1016/j.asoc.2012.11.021

Liem D-T., Truong D-Q., Ahn K-K. A torque estimator using online tuning grey fuzzy PID for applications to torque-sensorless control of DC motors, (2015) Mechatronics, Vol. 26, pp. 45-63.
https://doi.org/10.1016/j.mechatronics.2015.01.004

Savran A., Kahraman G. A fuzzy model based adaptive PID controller design for nonlinear and uncertain processes, (2014) ISA Transactions, Vol. 53, pp. 280-288.
https://doi.org/10.1016/j.isatra.2013.09.020

Jahedi G., Ardehali M.M. Genetic algorithm-based fuzzy-PID control methodologies for enhancement of energy efficiency of a dynamic energy system, (2011) Energy Conversion and Management, Vol. 52, pp. 725-732.
https://doi.org/10.1016/j.enconman.2010.07.051

Castillo O., Amador-Angulo L. A generalized type-2 fuzzy logic approach for dynamic parameter adaptation in bee colony optimization applied to fuzzy controller design, (2018) Information Sciences, Vol. 460-461, pp. 476-496.
https://doi.org/10.1016/j.ins.2017.10.032

Peraza C., Valdez F., Castro J., Castillo O. Fuzzy Dynamic Parameter Adaptation in the Harmony Search Algorithm for the Optimization of the Ball and Beam Controller, (2018) Advances in Operations Research, vol. 2018, Article ID 3092872.
https://doi.org/10.1155/2018/3092872

Caraveo C., Valdez F., Castillo O. A New Meta-Heuristics of Optimization with Dynamic Adaptation of Parameters Using Type-2 Fuzzy Logic for Trajectory Control of a Mobile Robot, (2017) Algorithms, 10(3), pp. 85.
https://doi.org/10.3390/a10030085

Ignatyev V.V., Kureychik V.M., Spiridonov O.B., Ignatyeva A.S., The method of hybrid control based on the adaptive system of neuro-fuzzy inference, (2017) Bulletin of SFedU. Technical science [Metod gibridnogo upravleniya na osnove adaptivnoi sistemy neiro-nechetkogo vyvoda // Izvestiya YuFU. Tehnicheskie nauki], 9(194), p. 2302, pp. 124-132. ISSN 1999-9429. (in Russian).

Ignatyev V.V., Spiridonov O.B., Kureychik V.M., Kovalev A.V., Ignatyeva A.S., The method of hybrid control in intelligent systems based on PID and PID-FUZZY-controllers. Bulletin of RGRTU [Metod gibridnogo upravleniya v intellektual’nyh sistemah na osnove PID I PID-FUZZY-regulyatorov, (2017) Vestnik RGRTU], №. 62, pp. 110-118. (in Russian). ISSN 1995-4565.
https://doi.org/10.21667/1995-4565-2017-62-4-110-118

Ignatyev V.V., Spiridonov O.B., Hybrid algorithm for formation the fuzzy controller rule base // Bulletin of SFedU. Technical science. Thematic issue "Radio-electronic and infocommunication technologies, systems and networks" [Gibridnyi algoritm formirovaniya bazy pravil nechetkogo regulyatora, (2015) Izvestiya YuFU, Tehnicheskie nauki. Tematicheskiy vypusk «Radioelektronnye I infokommunikacionnye tehnologii, sistemy I seti»,], 11(172), pp. 177-186. (in Russian).

Ignatyev, V., Soloviev, V., Beloglazov, D., Kureychik, V., Ignatyeva, A., Vorotova, A. System for automatic adjustment of intelligent controller parameters, (2019) Creativity in Intelligent Technologies and Data Science Third Conference, CIT&DS 2019, pp. 226–242.
https://doi.org/10.1007/978-3-030-29750-3_18

Ignatyev V.V., Soloviev V.V., Ignatyeva A.S., Boldyreff A.S. Analysis of the controllers of the vessel course control systems in difficult navigation conditions. Proc. SPIE 11169, Artificial Intelligence and Machine Learning in Defense Applications, 111690U. (2019). Event: SPIE Security+Defence, 2019, Strasbourg, France, Vol. 11169 111690U-1.
https://doi.org/10.1117/12.2554412


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize