Open Access Open Access  Restricted Access Subscription or Fee Access

Data Analysis and Data Generation Techniques for Comparative Examination of Distribution Network Topologies


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v14i1.16108

Abstract


Nowadays photovoltaic systems can be considered to play the key role in increasing decentralized power generation. These power generation systems typically connect to low and medium voltage distribution networks, thus affecting their operation. The proliferation of their increasing number and high power connection demand the transformation of the operation of the distribution network and the development of the infrastructure. An examination of development opportunities is in most cases done by software simulation, which requires network models to be created. In order to be able to formulate rules of thumb for such developments, a large-scale simulation is needed. To achieve this, the generation of reference networks that describe the real networks well is essential. In order for the reference networks to be created, clustering of real networks is required. When the clusters and their properties are properly defined and available, then the software implementable networks can be created. The aim of this paper is to give a brief overview of the clustering methodologies of radial distribution networks (including statistical clustering, dimensional reduction, agglomerative clustering, partition clustering, K-means and K-medoids clustering) and examine which may be useful for the comparison of advantages and disadvantages of these processes.
Copyright © 2019 Praise Worthy Prize - All rights reserved.

Keywords


Distribution Network; Network Classification; Network Clustering; Reference Network Models

Full Text:

PDF


References


A. Whiteman, H. Sohn, J. Esparrago, I. Arkhipova, S. Elsayed, Renewable capacity statistics, International Renewable Energy Agency (IRENA), 2018.
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Mar/IRENA_RE_Capacity_Statistics_2018.pdf

Data of license exemptioned small power plants and household size small power plants between 2008 and 2016, Hungarian Energy and Public Utility Regulatory Authority, 2016. (Nem engedélyköteles kiserőművek és háztartási méretű kiserőművek adatai 2008-2016, Magyar Energetikai és Közmű-szabályozási Hivatal, 2016.)
http://www.mekh.hu/download/7/15/40000/nem_engedelykoteles_es_hmke_ beszamolo_2016.pdf

G. A. Pagani, From the Grid to the Smart Grid, Topologically, University of Groningen, 2014.
http://www.cs.rug.nl/~aiellom/tesi/pagani.pdf

G. A. Pagani and M. Aiello, "Towards Decentralization: A Topological Investigation of the Medium and Low Voltage Grids," in IEEE Transactions on Smart Grid, vol. 2, no. 3, pp. 538-547, Sept. 2011.
https://doi.org/10.1109/tsg.2011.2147810

M. E. J. Newman, The Structure and Function of Complex Networks, SIAM Rev. 45 (2003) 167–256.
https://doi.org/10.1137/s003614450342480

G. A. Pagani, M. Aiello, The Power Grid as a complex network: A survey, Phys. A Stat. Mech. Its Appl. 392 (2013) 2688–2700.
https://doi.org/10.1016/j.physa.2013.01.023

D. Watts, S. H. Strogatz, Collective Dynamics of Small World Networks, Nature, volume 393, pages440–442 (1998) .
https://doi.org/10.1038/30918

V. Lenz, Generation of Realistic Distribution GridTopologies Based on Spatial Load Maps, Swiss Federal Institute of Technology (ETH) Zurich, 2015.
https://www.ethz.ch/content/dam/ethz/special-interest/itet/institute-eeh/power-systems-dam/documents/SAMA/2015/Lenz-SA-2015.pdf

P. Hines, S. Blumsack, E. C. Sanchez, C. Barrows, The Topological and Electrical Structure of Power Grids, in: 2010 43rd Hawaii Int. Conf. Syst. Sci., 2010: pp. 1–10.
https://doi.org/10.1109/hicss.2010.398

Y. Wang, J. Zhao, F. Zhang, B. Lei, Study on structural vulnerabilities of power grids based on the electrical distance, in: IEEE PES Innov. Smart Grid Technol., 2012: pp. 1–5.
https://doi.org/10.1109/isgt-asia.2012.6303284

K. P. Schneider, Yousu Chen, D. P. Chassin, R. G. Pratt, D. W. Engel, S. E. Thompson, Modern Grid Initiative Distribution Taxonomy Final Report, Pacific Northwest National Laboratory, 2008.
https://doi.org/10.2172/1040684

K. Vill, A. Rosin, Identification of Estonian weak low voltage grid topologies, in: 2017 IEEE Int. Conf. Environ. Electr. Eng. 2017 IEEE Ind. Commer. Power Syst. Eur. (EEEIC / I&CPS Eur., 2017: pp. 1–5.
https://doi.org/10.1109/eeeic.2017.7977757

S. Abeysinghe, J. Wu, M. Sooriyabandara, M. Abeysekera, T. Xu, C. Wang, Topological properties of medium voltage electricity distribution networks, Appl. Energy. 210 (2018) 1101–1112.
https://doi.org/10.1016/j.apenergy.2017.06.113

K. Tamás, Prediction of sustainability and solvency of economic organizations (Ph.D. thesis), Corvinus University of Budapest, 2008. (K. Tamás, Gazdasági szervezetek fennmaradásának és fizetőképességének előrejelzése, Corvinus University of Budapest, 2008.)
http://phd.lib.uni-corvinus.hu/370/1/kristof_tamas.pdf

F. Dehghani, H. Nezami, M. Dehghani, M. Saremi, Distribution feeder classification based on self organized maps (case study: Lorestan province, Iran), in: 2015 20th Conf. Electr. Power Distrib. Networks Conf., 2015: pp. 27–31.
https://doi.org/10.1109/epdc.2015.7330468

A. Méffe, C. Oliveira, Classification techniques applied to electrical energy distribution systems, in: CIRED 2005 - 18th Int. Conf. Exhib. Electr. Distrib., 2005: pp. 1–5.
https://doi.org/10.1049/cp:20051361

Z. Ilonczai, Cluster analysis and their applications (M.Sc. thesis), Eötvös Loránd University, Budapest, 2014. (Z. Ilonczai, Klaszter-analízis és alkalmazásai, Eötvös Loránd University, Budapest, 2014.)
http://people.inf.elte.hu/fekete/algoritmusok_msc/klaszterezes/ket_szakdolgozat/Diplomamunka_IZs.pdf

R. J. Broderick, J.R. Williams, Clustering methodology for classifying distribution feeders, in: 2013 IEEE 39th Photovolt. Spec. Conf., 2013: pp. 1706–1710.
https://doi.org/10.1109/pvsc.2013.6744473

Y. Li, P. Wolfs, Statistical identification of prototypical low voltage distribution feeders in Western Australia, in: 2012 IEEE Power Energy Soc. Gen. Meet., 2012: pp. 1–8.
https://doi.org/10.1109/pesgm.2012.6345028

P. N. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining: Pearson New International Edition, Pearson Education Limited, 2013.
https://books.google.hu/books?id=jC6pBwAAQBAJ

R. J. Broderick, K. Munoz-Ramos, M.J. Reno, Accuracy of clustering as a method to group distribution feeders by PV hosting capacity, in: 2016 IEEE/PES Transm. Distrib. Conf. Expo., 2016: pp. 1–5.
https://doi.org/10.1109/tdc.2016.7520083

J. Watson, N. Watson, D. Santos-Martin, S. Lemon, A. Wood, A. Miller, Low Voltage Network Modelling, EEA Conf. Exhib. (2014) 15.
https://www.researchgate.net/profile/Jeremy_Watson2/publication/269274442_Low_Voltage_Network_Modelling/links/548571770cf24356db60f0a8/Low-Voltage-Network-Modelling.pdf

Y. Li, P. Wolfs, Preliminary statistical study of low voltage distribution feeders under a representative HV network in Western Australia, in: AUPEC 2011, 2011: pp. 1–6.
https://ieeexplore.ieee.org/document/6102562/

C. Gonzalez, J. Geuns, S. Weckx, T. Wijnhoven, P. Vingerhoets, T. De Rybel, J. Driesen, LV distribution network feeders in Belgium and power quality issues due to increasing PV penetration levels, in: 2012 3rd IEEE PES Innov. Smart Grid Technol. Eur. (ISGT Eur., 2012: pp.
https://doi.org/10.1109/isgteurope.2012.6465624

J. Dickert, M. Domagk, P. Schegner, Benchmark Low Voltage Distribution Networks Based on Cluster Analysis of Actual Grid Properties, 2013 IEEE Grenoble Conference
https://doi.org/10.1109/ptc.2013.6652250

J. Cale, B. Palmintier, D. Narang, K. Carroll, Clustering distribution feeders in the Arizona Public Service territory, in: 2014 IEEE 40th Photovolt. Spec. Conf., 2014: pp. 2076–2081.
https://doi.org/10.1109/pvsc.2014.6925335

J. P. P. González, A Network Reference Model for Distribution Regulation and Planning: the Spanish Case, Universidad Pontificia Comillas, Madrid, n.d.
https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/Netzentgelte/Anreizregulierung/Vortrag_JesusPascualPecoGonzalez.pdf?__blob=publicationFile&v=1

T. Gómez, C. Mateo, Á. Sánchez, P. Frías, R. Cossent, Reference Network Models: A Computational Tool for Planning and Designing Large-Scale Smart Electricity Distribution Grids, Springer, Berlin, Heidelberg, 2013.
https://doi.org/10.1007/978-3-642-32683-7_9

Z. Wang, A. Scaglione, R. J. Thomas, Generating Statistically Correct Random Topologies for Testing Smart Grid Communication and Control Networks, IEEE Trans. Smart Grid. 1 (2010) 28–39.
https://doi.org/10.1109/tsg.2010.2044814

J. Kirk, Count Loops in a Graph, (2012).
https://www.mathworks.com/matlabcentral/fileexchange/10722-count-loops-in-a-graph

J. Hu, L. Sankar, D. J. Mir, Cluster-and-Connect: An algorithmic approach to generating synthetic electric power network graphs, in: 2015 53rd Annu. Allert. Conf. Commun. Control. Comput., 2015: pp. 223–230.
https://doi.org/10.1109/allerton.2015.7447008

C. M. Domingo, T. G. S. Roman, S.-M. Á, J. P. P. Gonzalez, A.C. Martinez, A Reference Network Model for Large-Scale Distribution Planning With Automatic Street Map Generation, IEEE Trans. Power Syst. 26 (2011) 190–197.
https://doi.org/10.1109/tpwrs.2010.2052077

A. Navarro, H. Rudnick, Large-Scale Distribution Planning—Part I: Simultaneous Network and Transformer Optimization, IEEE Trans. Power Syst. 24 (2009) 744–751.
https://doi.org/10.1109/tpwrs.2009.2016593

A. Navarro, H. Rudnick, Large-Scale Distribution Planning—Part II: Macro-Optimization With Voronoi’s Diagram And Tabu Search, IEEE Trans. Power Syst. 24 (2009) 752–758.
https://doi.org/10.1109/tpwrs.2009.2016594

R. Bhakar, N.P. Padhy, H.O. Gupta, Reference network development for distribution network pricing, in: IEEE PES T&D 2010, 2010: pp. 1–8.
https://doi.org/10.1109/tdc.2010.5484370

R. Bhakar, N. P. Padhy, H. O. Gupta, Development of a flexible distribution reference network, in: IEEE PES Gen. Meet., 2010: pp. 1–8.
https://doi.org/10.1109/pes.2010.5589867

S. Soltan, G. Zussman, Generation of synthetic spatially embedded power grid networks, in: 2016 IEEE Power Energy Soc. Gen. Meet., 2016: pp. 1–5.
https://doi.org/10.1109/pesgm.2016.7741383


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize