Open Access Open Access  Restricted Access Subscription or Fee Access

Analysis of a Thunderstorm Activity According to WWLLN: a Case Study


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v13i1.14732

Abstract


The analysis of thunderstorm activity is carried out in Timiryazevskiy forestry of Tomsk region. The authors used data from the World Wide Lightning Location Network (WWLLN) in 2010-2015. The five WWLLN stations nearest to Tomsk (until 2015) were Bryansk (≈3200 km), Yakutsk (≈2600 km), Beijing (≈2900 km), Lanzhou (≈2700 km) and Vladivostok (≈3600 km). The network registered data throughout the year. Data on spherics recorded by WWLLN contain the following indicators: date, time, latitude, longitude, error and number of stations in which the electromagnetic pulse was recorded. The year of the maximum number of lightning discharges according to WWLLN is 2015 in Timiryazevskiy forestry. The smallest number of lightning discharges was observed in 2010, 2012 and 2013. During one day, the peak of lightning discharges is observed at noon time, at 14-15 hours, and at night, 22-1 hours, according to the local solar time. The minimum number of spherics is observed in the early morning, at 5-6 hours. The highest density of lightning discharges is characteristic for the central parts of Timiryazevskiy forestry. As a conclusion, it should be noted that lightning activity was complex over the territory of Timiryazevskiy forestry in the period from 2010 to 2015. Days were found when more than 300 discharges per day were recorded with a maximum both in the afternoon and at night. In addition, the maximum number of lightning discharges in certain years can be observed not only in July, but also in June and August.
Copyright © 2018 Praise Worthy Prize - All rights reserved.

Keywords


Lightning Discharge; WWLLN; Tomsk Region; Spatial-Temporal Distribution; Timiryazevskiy Forestry

Full Text:

PDF


References


D. Mollicone, H.D. Eva, F. Achard, Ecology: Human role in Russian wild fires, Nature. Vol. 440. 2006. pp. 436-437.
http://dx.doi.org/10.1038/440436a

M.A. Uman, Lightning. (N. Y.: McGraw-Hill. 1969).

Yu. Chang, Z. Zhu, R. Bu, Ye. Li, Y. Hu, Environmental controls on the characteristics of mean number of forest fires and mean forest area burned (1987–2007) in China, Forest Ecology and Management. Vol. 356. 2015. pp. 13-21.
http://dx.doi.org/10.1016/j.foreco.2015.07.012

V. A. Ivanov Methodological basis for classification of forests in Central Siberia in terms of the degree of fire danger from thunderstorms. Diss. Krasnoyarsk: SibSTU, 2006. (In Russian)

R.A. Hartford, Smoldering combustion limits in peat as influenced by moisture, minеral content and organic bulk density, 10th Conference on Fire and Forest Meteorology. Downsview, ON: Atmospheric Environment Service, 1990.
http://dx.doi.org/10.1071/wf10048

N. V. Baranovskiy, G.V. Kuznetsov, Forest fire occurrences and ecological impact prediction: monograph. (Novosibirsk: Publishing House of Siberian Branch of Russian Academy of Science, 2017)
http://dx.doi.org/10.15372/forest2017bnv

N. Baranovskiy, M. Zharikova, A web-oriented geoinformation system application for forest fire danger prediction in typical forests of the Ukraine, Lecture Notes in Geoinformation and Cartography. 2014. (199669). pp. 13-22.
http://dx.doi.org/10.1007/978-3-319-08180-9_2

Z. Qun, Y. Yujin, K. Yuena, GIS Application System Design Applied to Information Monitoring, Physics Procedia. Vol. 25. 2012. pp. 2235-2241.
http://dx.doi.org/10.1016/j.phpro.2012.03.376

Scientific and applied reference book on the climate of the USSR. Series 3. Perennial data. Parts 1-6. Issue. 20. (Tomsk, Novosibirsk, Kemerovo regions and Altai Territory). (St. Petersburg: Gidrometeoizdat, 1993) (In Russian)

G. Amatulli, F. Perez-Cabello, J. Du la Riva Mapping lightning / human-caused wildfires occurrence under ignition point location uncertainty, Ecological Modelling. Vol. 200, 2007. pp. 321-333.
http://dx.doi.org/10.1016/j.ecolmodel.2006.08.001

F. Guo, Z. Su, G. Wang, L. Sun, H. Hu Understanding fire drivers and relative impacts in different Chinese forest ecosystems, Science of The Total Environment, Vol. 605–606. 2017. pp. 411-425.
http://dx.doi.org/10.1016/j.scitotenv.2017.06.219

F. Restuccia, X. Huang, G. Rein, Self-ignition of natural fuels: Can wildfires of carbon-rich soil start by self-heating?, Fire Safety Journal. Vol. 91. 2017. pp. 828-834
http://dx.doi.org/10.1016/j.firesaf.2017.03.052

R. Tortini, S. M. van Manen, B. R. B. Parkes, S. A. Carn, The impact of persistent volcanic degassing on vegetation: A case study at Turrialba volcano, Costa Rica, International Journal of Applied Earth Observation and Geoinformation. Vol. 59. 2017. pp. 92-103.
http://dx.doi.org/10.1016/j.jag.2017.03.002

N. V. Baranovskiy, Mathematical modeling for the forest fuel layer ignition caused by focused solar radiation flux, Proceedings of SPIE - The International Society for Optical Engineering, Vol. 9680, 2015. Paper 96805L, 6 P.
http://dx.doi.org/10.1117/12.2205194

A.P. Dimitrakopoulos, P.I. Panov Pyric properties of some dominant Mediter¬ranean vegetation species // International Journal of Wildland Fire. Vol. 10, 2001. P. 23-27.
http://dx.doi.org/10.1071/wf01003

N.V. Baranovskiy, G.V. Kuznetsov, T.N. Nemova High temperature wood particles formation caused by the cloud-to-ground lightning discharge through the coniferous tree trunk // Far East Journal of Mathematical Sciences. Vol. 102. 2017. pp. 1033-1044.
http://dx.doi.org/10.17654/ms102051033

V. A. Ivanov, G. A. Ivanova, E. A. Kukavskaya, A zone of possible ignition by a lightning of a ground fuel in the forest, Forestry. 2006. N 5. pp. 40 - 43. (In Russian)

D. W. van der Kamp, R. D. Moore, I. G. McKendry, A model for simulating the moisture content of standardized fuel sticks of various sizes, Agricultural and Forest Meteorology. Vol. 236. 2017. pp. 123-134
http://dx.doi.org/10.1016/j.agrformet.2017.01.013

L. J. Ribeiro Nunes, J. C. De Oliveira Matias, J. P. Da Silva, Catalão Chapter 1: Introduction, Torrefaction of Biomass for Energy Applications. 2018. P. 1-43
http://dx.doi.org/10.1016/b978-0-12-809462-4.00001-8

V. N. Vilyunov, Theory of ignition of condensed matter. (Novosybirsk: Science, Sib. Dept., 1984) (In Russian)

A. M. Grishin, A. I. Filkov, Forecast of occurrence and spread of forest fires. (Kemerovo: Practice, 2005) (In Russian)

M. Larjavaara, T. Kuuluvainen, H. Rita, Spatial distribution of lightning-ignited fires in Finland, Forest Ecology and Management. Vol. 208, 2005. N. 1-3. pp. 177-188.
http://dx.doi.org/10.1016/j.foreco.2004.12.005

D. J. Latham, J. A. Schlieter, Ignition probabilities of wildland fuels based on simu¬lated lightning discharges, USDA Forest Service Res. Pap. INT-411. 1989. 16 p.
http://dx.doi.org/10.2737/rmrs-rn-21-v19

N. V. Baranovskiy, G. V. Kuznetsov, Coniferous tree ignition by cloud-to-ground lightning discharge using approximation of “ideal” crack in bark, JP Journal of Heat and Mass Transfer. Vol. 14. 2017. pp. 173-186.
http://dx.doi.org/10.17654/hm014010173

Canadian Wildland Fire Information System. Official site. Access: http://cwfis.cfs.nrcan.gc.ca/home (Available 21 December 2017)

J. S. Gould, M. N. Patriquin, S. Wang, B. L. McFarlane, Wotton B.M., Economic evaluation of research to improve the Canadian forest fire danger rating system, Forestry. Vol. 86. 2013. pp. 317-329.
http://dx.doi.org/10.1093/forestry/cps082

A. V. Volokitina, M. A. Sofronov, Classification and mapping of plant combustible materials. (Novosibirsk: Siberian Branch of the Russian Academy of Sciences, 2002) (In Russian)

D. L. Martell A Markov, Chain Model of Day to Day Changes in the Canadian Forest Fire Weather Index, International Journal of Wildland Fire. Vol. 9. 2000. P. 265-273
http://dx.doi.org/10.1071/wf00020

B. M. Wotton, Interpreting and using outputs from the Canadian Forest Fire Danger Rating System in research applications, Environmental and Ecological Statistics. Vol. 16. 2009. pp. 107-131.
http://dx.doi.org/10.1007/s10651-007-0084-2

B. S. Lee, M. E. Alexander, B. C. Hawkes et al., Information systems in support of wildland fire management decidion making in Canada, Computers and Elec¬tronics in Agriculture. Vol. 37, 2002. pp. 185-198.
http://dx.doi.org/10.1016/s0168-1699(02)00120-5

WFAS Wildland Fire Assessment System. Official site. Access: http://www.wfas.net (Available 21 December 2017)

J. E. Deeming, J. W. Lancaster, M. A. Fosberg, W. R. Furman, M. J. Schroeder, The National Fire Danger Rating System. United States Department of Agriculture, Forest Service, Research Paper RM-84, Rocky Mountain Forest and Range Experiment Station, Fort Collins, Colorado. 1974. 165 P.
http://dx.doi.org/10.5962/bhl.title.98707

J. E. Deeming, R. E. Burgan, J. D. Cohen, The National Fire Danger Rating System - 1978. United States Department of Agriculture, Forest Service, General Technical Report INT-39, Intermountain Forest and Range Experiment Station, Odgen, Utah. 1977. 66 P.
http://dx.doi.org/10.5962/bhl.title.68713

D. Haines, A lower-atmosphere severity index for wildland fires, National Weather Digest, Vol. 13. 1988. pp. 23 – 27.
http://dx.doi.org/10.1002/9781118929216.index

H. K. Preisler, D. R. Brillinger, R. E. Burgan, J. W. Benoit Probability based models for estimation of wildfire risk, International Journal of Wildland Fire, Vol. 13. 2004. pp. 133-142.
http://dx.doi.org/10.1071/wf02061

M. L. Rorig, S. A. Ferguson, Characteristics of lightning and wildland fire ignition in the Pacific Northwest, Journal of Applied Meteorology, Vol. 38. 1999. pp. 1565 – 1575.

K. L. Cummins, M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, A. E. Pifer, A combined TOA/MDF technology upgrade of the U.S. national lightning detection network, Journal of Geophysical Research. Vol. 1998. 103. pp. 9035—9044.
http://dx.doi.org/10.1029/98jd00153

P. Sopko, D. Latham, I. Grenfell Verification of the WFAS Lightning Efficienty Map, in Butler B.W., Cook W. The fire environment innovations, management, and policy. Conference Proceedings. 26-30 March 2007. Destin, FL. Proceedings RMRS-P_46CD. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. CD-ROM.

M. A. Finney, FARSITE: a fire area simulator for fire managers, The Biswell Simposium, February 15-17, 1994. Walnut Creek, California. 1994.
http://dx.doi.org/10.2737/psw-gtr-158

R. E. Burgan, R. C. Rothermel, BEHAVE: fire behavior prediction and fuel modeling system – FUEL subsystem. United States Department of Agriculture, Forest Service, General Technical Report INT-167, Intermountain Forest and Range Experiment Station, Odgen, Utah. 1984. 126 P.
http://dx.doi.org/10.2737/int-gtr-167

P. L. Andrews, BEHAVE: fire behavior prediction and fuel modeling system – BURN subsystem, Part 1. United States Department of Agriculture, Forest Service, General Technical Report INT-194, Intermountain Forest and Range Experiment Station, Odgen, Utah. 1986. 130 P.
http://dx.doi.org/10.2737/int-gtr-194

P. L. Andrews, C. H. Chase, BEHAVE: fire behavior prediction and fuel modeling system – BURN subsystem, Part 2. United States Department of Agriculture, Forest Service, General Technical Report INT-260, Intermountain Forest and Range Experiment Station, Odgen, Utah. 1989. 93 P.
http://dx.doi.org/10.2737/int-gtr-260

European Forest Fire Information System. Official site. Access: http://effis.jrc.ec.europa.eu (Available 21 December 2017)

D. X. Viegas, G. Bovio, A. Ferreira et al., Comparative study of various methods of fire danger evaluation in Southern Europe, International Journal of Wildland Fire. Vol. 10. 1999. pp. 235-246.
http://dx.doi.org/10.1071/wf00015

T. Wang, J. Shi, Y. Yu, L. Husi, B. Gao, W. Zhou, D. Ji, T. Zhao, C. Xiong, L. Chen, Cloudy-sky land surface longwave downward radiation (LWDR) estimation by integrating MODIS and AIRS/AMSU measurements, Remote Sensing of Environment. Vol. 205. 2018. pp. 100-111.
http://dx.doi.org/10.1016/j.rse.2017.11.011

S. Skakun, C. O. Justice, E. Vermote, J.-C. Roger, Transitioning from MODIS to VIIRS: an analysis of inter-consistency of NDVI data sets for agricultural monitoring, International Journal of Remote Sensing. Vol. 39. 2018. pp. 971-992.
http://dx.doi.org/10.1080/01431161.2017.1395970

Information system for remote monitoring of forest fires ISDM-Rosleskhoz. Official site. Access: https://nffc.aviales.ru/main_pages/index.shtml (Available 21 December 2017)

M. V. Radchenko, I. V. Balashov, V. Yu. Efremov, R. V. Kotelnikov, A. A. Mazurov, S. E. Miklashevich, A. A. Proshin, E. V. Fleitman, Hardware complexes for processing, storing and presenting data of the central nodes of ISDM-Rosleskhoz, Modern problems of remote sensing of the Earth from space. Vol. 8. N 3. 2011.pp.167 - 174. (In Russian)

S. A. Bartalev, D. V. Ershov, A. S. Isaev, E. A. Lupyan Main tasks and perspectives of creating a system of global satellite forest monitoring, Lesovedenie. N 6. 2011. pp. 3 - 15. (In Russian)

E. A. Lupyan, R. R. Nazirov, Organization of archives of satellite data for solving global climate change problems, Electronic Journal. "Investigated in Russia". N 32. 2000. pp. 438 - 450. (In Russian)

A. S. Podolskaya, D. V. Ershov, P. P. Shulyak, Application of the method for assessing the probability of occurrence of forest fires in ISDM-Rosleskhoz, Modern problems of remote sensing of the Earth from space. Vol. 8. N 1. 2011. pp. 118 - 126. (In Russian)

A. M. Grishin, A. I. Fil'kov, Model of prediction of forest-fire hazard, Inzhenerno-Fizicheskii Zhurnal. Vol. 76. 2003. pp. 154-158.
http://dx.doi.org/10.1023/b:joep.0000003232.47807.37

A. M. Grishin, A. N. Golovanov, L. Yu. Kataeva, E. L. Loboda, Problem of drying of a layer of combustible forest materials, Inzhenerno-Fizicheskii Zhurnal. Vol. 74. 2001.pp. 58-64.
http://dx.doi.org/10.1023/a:1012351121768

A. M. Grishin, A. N. Golovanov, L. Yu. Kataeva, E. L. Loboda, Formulation and solution of the problem of drying of a layer of combustible forest materials, Combustion, Explosion and Shock Waves. Vol. 37. 2001. pp. 57-66.
http://dx.doi.org/10.1023/a:1002868709387

A. M. Grishin, A. I. Filkov, A deterministic-probabilistic system for predicting forest fire hazard, Fire Safety Journal. Vol. 46. 2011. pp. 56-62.
http://dx.doi.org/10.1016/j.firesaf.2010.09.002

D. A. Konstantinova, V. P. Gorbatenko, Results of recording lightning over the south-eastern territory of Western Siberia, Izvestiya Vysshikh Uchebnykh Zavedenii. Physics. N. 11/3. 2011. pp. 156-162. (In Russian)

V. P. Gorbatenko, A. A. Dulzon, M. V. Reshet'ko, Spatial and temporal variations of thunderstorm activity over the Tomsk region, Meteorology and hydrology. N 12. 1999. pp. 21-28. (In Russian)

A. A. Dulzon, V. P. Gorbatenko, Results of the study of thunderstorm activity over the territory of the Tomsk region, Izvestiya TPU. N 2. 2006. pp. 126-129. (In Russian)

L. G. Ananova, V. P. Gorbatenko, I. A. Lukovskaya, Peculiarities of the radar characteristics of convective clouds during squalls in the southeast of Western Siberia, Meteorology and Hydrology. N 7. 2007. pp. 51 - 56. (In Russian)

I. I. Kononov, F. Rishar, Methods of passive location of thunderstorms, Design and technology of electronic devices. 2004. pp. 17 - 20. (In Russian)

K. Hehemann, Nutzung der Polaritäts- und Amplitudeninformationen des SAFIR-Blitzortungssystems. MS theses. 2007.

C. O. Hayenga, J.W. Warwick Two-dimentional interferometric positions of VHF lightning sources, Journal of Geophysical Research. Vol. 86. 1981. pp. 7451–7462.
http://dx.doi.org/10.1029/jc086ic08p07451

V. P. Gorbatenko, T. V. Ershova, D. A. Konstantinova, The spatial distribution of the density of lightning discharges into the land above the territory of Western Siberia, Bulletin of Tomsk State University. N 329. 2009. pp. 251 - 255. (In Russian)

WWLLN Handbook for Setting up the WWLLN station. Access: http://wwlln.net/WWLLN_Stn_Hbook_2011.pdf (Available 26 December 2017)

Hardware for a WWLLN site. Access: http://webflash.ess.washington.edu/Hardware_for_a_WWLLN_site1.pdf (Available 26 December 2017)

V. P. Gorbatenko, A. A. Gromnitskaya, D. A. Konstantinova, T. V. Ershova, O. E. Nechepurenko, Assessment of the role of climatic factors in the occurrence and spread of forest fires in the Tomsk region, Bulletin of Tomsk State University. N. 395. 2015. pp. 233 - 240. (In Russian)

Boltek LD-250 User Manual. Access: http://www.boltek.com/LD-250 User Manual 2011202012.pdf (Available 26 December 2017)
http://dx.doi.org/10.1002/9780470757932.app1

Boltek Storm Tracker PCI Manual. Access: http://www.boltek.com/manual-pci.pdf (Available 26 December 2017)

R. B. Bent, W. A. Lyons, Theoretical evaluations and initial operational experiences of LPATS (lightning position and tracking system) to monitor lightning ground strikes using a time-of-arrival (TOA) technique, Proceedings of VII International Conference on Atmospheric Electricity, 1984, June 3 -8 , Albany, NY. 1984.
http://dx.doi.org/10.1109/eeis.1995.513818

H. J. Christian, K. T. Driscoll, S. J. Goodman, R. J. Blakeslee, D. A. Mach, D. E. Buechler, The Optical Transient Detector (OTD), Proceedings of the 10th International Conference on Atmospheric Electricity; Osaka, Japan; June 10-14, 1996.
http://dx.doi.org/10.1175/1520-0426(2000)017%3C0441:totdoi%3E2.0.co;2

H. J. Christian, R. J. Blakeslee, D. J. Boccippio, W. L. Boeck, D. E. Buechler, K. T. Driscoll, S. J. Goodman, J. M. Hall, D. A. Mach, M. F. Stewart, Global Frequency and Distribution of Lightning as Observed by the Optical Transient Dector (OTD), Proceedings of the 11th International Conference on Atmospheric Electricity, Guntersville, Alabama, June 7-11, 1999.
http://dx.doi.org/10.1175/1520-0426(2000)017%3C0441:totdoi%3E2.0.co;2

Baranovskiy N. V., Yankovich E. P., Engel M. V., Belov V. V., Geomonitoring of Forest Fire Danger Using GIS and Remote Sensing: Case Study for Typical Area of Tomsk Region, 5th International Fire Behavior and Fuels Conference, Melbourne, April 11-15, 2016. TMBprint Ltd., 2016. pp. 70-73.
http://dx.doi.org/10.1117/12.2240378

M. L. Hutchins, R. H. Holzworth, J. B. Brundell, C.J. Rodger, Relative detection efficiency of the World Wide Lightning Location Network, Radio Science, Vol. 47. 2012. N RS6005.
http://dx.doi.org/10.1029/2012rs005049


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize