Open Access Open Access  Restricted Access Subscription or Fee Access

Single-Stage Boost-Buck PFC Converter with Soft-Switching Operation and Ripple-Free Output Current


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v11i4.9176

Abstract


In this paper, a single-stage boost-buck power-factor-correction (PFC) converter with soft-switching operation and ripple-free output current is proposed. In order to obtain high power factor, a boost PFC cell is operated in discontinuous conduction mode (DCM) with a fixed switching frequency according to the load condition. For the ripple-free output current, a buck inductor is replaced with a coupled inductor and an auxiliary capacitor. The boost PFC cell and the buck converter share a main switch and a self-driven synchronous rectifier (SR). By turning the SR off after a short delay, the main switch is turned on under zero-voltage-switching (ZVS) condition. Since the conduction loss on the SR is reduced and there is no switching loss on the main switch, the power-conversion efficiency is improved. The maximum efficiency of the proposed converter 93.37% is measured at 130vac. To verify the performance of the proposed converter, theoretical analyses, design procedures, and experimental results from a 80V and 100W prototype are presented.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


Single-Stage Converter; Power-Factor-Correction (PFC); Zero-Voltage-Switching (ZVS); Synchronous Rectifier

Full Text:

PDF


References


X. Xie, J. Li, K. Peng, C. Zhao, and Q. Lu, “Study on the Single-Stage Forward-Flyback PFC Converter With QR Control,” IEEE Trans. on Power Electron., vol. 31, no. 1, pp. 430-442, Jan. 2016.
http://dx.doi.org/10.1109/tpel.2015.2404859

J.-W. Yang and H.-L. Do, “Efficient Single-Switch Boost-Dual-Input Flyback PFC Converter With Reduced Switching Loss,” IEEE Trans. on Industrial Electron., vol. 62, no. 12, pp. 7460-7468, Dec. 2015.
http://dx.doi.org/10.1109/tie.2015.2453938

Kim, S., Song, T., Do, H., A High Power Factor Bridgeless Flyback PFC Converter with Synchronous Rectifier, (2015) International Review of Electrical Engineering (IREE), 10 (5), pp. 569-577.
http://dx.doi.org/10.15866/iree.v10i5.7193

H. S. Athab, D. D.-C. Lu, A. Yazdani, and B. Wu, “An Efficient Single-Switch Quasi-Active PFC Converter With Continuous Input Current and Low DC-Bus Voltage Stress,” IEEE Trans. on Industrial Electron., vol. 61, no. 4, pp. 1735-1749, April. 2014.
http://dx.doi.org/10.1109/tie.2013.2262755

Y.-C. Li and C.-L. Chen, “A Novel Primary-Side Regulation Scheme for Single-Stage High-Power-Factro AC-DC LED Driving Circuit,” IEEE Trans. on Industrial Electron., vol. 60, no. 11, pp. 4978-4986, Nov. 2013.
http://dx.doi.org/10.1109/tie.2012.2224080

S. Dusmez, X. Li, and B. Akin, “A Fully Integrated Three-Level Isolated Single-Stage PFC Converter,” IEEE Trans. on Power Electron., vol. 30, no. 4, pp. 2050-2062, Apr. 2015.
http://dx.doi.org/10.1109/tpel.2014.2325037

H. S. Ribeiro and B. V. Borges, “High-Performance Voltage-Fed AC-DC Full-Bridge Single-Stage Power Factor Correctors with a Reduced DC Bus Capacitor,” IEEE Trans. on Power Electron., vol. 29, no. 6, pp. 2680-2692, June. 2014.
http://dx.doi.org/10.1109/tpel.2013.2272723

M. Narimani and G. Moschopoulos, “A Three-Level Integrated AC-DC Converter,” IEEE Trans. on Power Electron., vol. 29, no. 4, pp. 1813-1820, April. 2014.
http://dx.doi.org/10.1109/tpel.2013.2264359

Liao, Y., Cheng, Y., Yang, L., A Novel High-Efficiency High-Power-Factor Single-Stage Converter for Small-Scale Wind Power Generation System, (2013) International Review of Electrical Engineering (IREE), 8 (6), pp. 1663-1670.

Y. Wang, J. Huang, G. Shi, W. Wang, and D. Xu, “A Single-Stage Single-Switch LED Driver Based on the Integrated SEPIC Circuit and Class-E Converter,” IEEE Trans. on Power Electron., vol. 31, no. 8, pp. 5814-5824, Aug. 2016.
http://dx.doi.org/10.1109/tpel.2015.2489464

M. Marvi and A. F. Ahmady, “A Fully ZVS Critical Conduction Mode Boost PFC,” IEEE Trans. on Power Electron., vol. 27, no. 4, pp. 1958-1965, Apr. 2012.
http://dx.doi.org/10.1109/tpel.2011.2171045

Kim, S., Do, H., Single-Stage AC/DC Boost-Zeta Converter with Soft Switching Operation, (2014) International Review of Electrical Engineering (IREE), 9 (5), pp. 889-897.
http://dx.doi.org/10.15866/iree.v9i5.3445

J.-W. Yang and H.-L. Do, “High-Efficiency ZVS AC-DC LED Driver Using a Self-Driven Synchronous Rectifier,” IEEE Trans. on Circuits and Systems I:Regular Papers, vol. 61, no. 8, pp. 2505-2512, Aug. 2014.
http://dx.doi.org/10.1109/tcsi.2014.2309837

B. Zhao, A. Zbramovitz, and K. Smedley, “Family of Bridgeless Buck-Boost PFC Rectifiers,” IEEE Trans. on Power Electron., vol. 30, no. 12, pp. 6524-6527, Dec. 2015.
http://dx.doi.org/10.1109/tpel.2015.2445779

Yang, J., Do, H., Soft-Switching Buck PFC Converter for a High-Efficiency AC-DC LED Driver, (2013) International Review of Electrical Engineering (IREE), 8 (6), pp. 1647-1655.

X. Xie, C. Zhao, L. Zheng, and S. Liu, “An Improved Buck PFC Converter With High Power Factor,” IEEE Trans. on Power Electron., vol. 28, no. 5, pp. 2277-2284, May 2013.
http://dx.doi.org/10.1109/tpel.2012.2214060

X. Wu, J. Yang, J. Zhang, and Z. Qian, “Variable On-Time (VOT)-Controlled Critical Conduction Mode Buck PFC Converter for High-Input AC/DC HB-LED Lighting Applications,” IEEE Trans. on Power Electron., vol. 27, no. 11, pp. 4530-4539, Nov. 2012.
http://dx.doi.org/10.1109/tpel.2011.2169812

Yang, J., Do, H., A Bridgeless SEPIC PFC Rectifier with Reduced Conduction Losses, (2013) International Review of Electrical Engineering (IREE), 8 (6), pp. 1656-1662.

Song, T., Lee, S., Do, H., A Two-Stage Output Current Ripple-Free Flyback-Buck AC-DC LED Driver with High Power Factor, (2016) International Review of Electrical Engineering (IREE), 11 (1), pp. 1-8.
http://dx.doi.org/10.15866/iree.v11i1.7852

Y. Tang, D. Zhu, C. Jin, P. Wang, and F. Blaabjerg, “A Three-Level Quasi-Two-Stage Single-Phase PFC Converter with Flexible Output Voltage and Improved Conversion Efficiency,” IEEE Trans. on Power Electron., vol. 30, no. 2, pp. 717-726, Feb. 2015.
http://dx.doi.org/10.1109/tpel.2014.2314136

M. Arias, M. F. Diaz, D. G. Lamar, D. Balocco, A. A. Diallo, and J. Sebastian, “High-Efficiency Asymmetrical Half-Bridge Converter Without Electrolytic Capacitor for Low-Output-Voltage AC-DC LED Drivers,” IEEE Trans. on Power Electron., vol. 28, no. 5, pp. 2539-2550, May 2013.
http://dx.doi.org/10.1109/tpel.2012.2213613

J.-E. Park, J.-W. Kim, B.-H. Lee, and G.-W. Moon, “Design on Topologies for High Efficiency Two-stage AC-DC Converter,” in Proc. IEEE EECE Asia, 2012, pp. 257-262.
http://dx.doi.org/10.1109/ipemc.2012.6258845

S.-J. Kim and H.-L. Do, “Soft-Switching Step-Up Converter With Ripple-Free Output Current,” IEEE Trans. on Power Electron., vol. 31, no. 8, pp. 5618-5624, Aug. 2016.
http://dx.doi.org/10.1109/tpel.2015.2493148

Z. Chen, Q. Zhou, and J. Xu, “Coupled-inductor boost integrated flyback converter with high-voltage gain and ripple-free input current,” IET Power Electronics, vol. 8, no. 2, pp. 213-220, Feb. 2015.
http://dx.doi.org/10.1049/iet-pel.2014.0066

M. Mohammadi, M. Taheri, J. MiliMonfared, B. Abbasi, and M. Behbahani, “High step-up DC–DC converter with ripple free input current and soft switching,” IET Power Electronics, vol. 7, no. 12, pp. 3023-3032, Dec. 2014.
http://dx.doi.org/10.1049/iet-pel.2013.0881

J.-W. Yang and H.-L. Do, “Bridgeless SEPIC Converter With a Ripple-Free Input Current,” IEEE Trans. on Power Electron., vol. 28, no. 7, pp. 3388-3394, July 2013.
http://dx.doi.org/10.1109/tpel.2012.2226607


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize