Open Access Open Access  Restricted Access Subscription or Fee Access

Accurate LVDT Signal Converter


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v11i3.8906

Abstract


A novel technique to implement a signal converter for an inductive displacement transducer, a linear variable differential transformer (LVDT), is proposed in this paper. The technique is based on the use of the proposed peak-amplitude finder and the zero-order sample and hold circuit (ZSH) instead of the synchronous demodulator used in traditional approach. The advantage of this technique is that the phase shift due to the dominant pole of the low-pass filter used in the traditional synchronous demodulator is avoided. Therefore, the fast response time of the proposed LVDT signal converter is achieved. The core displacement signal, which is varied in proportion to the position of the moving core of the LVDT, is accurately extracted to direct-current (DC) voltage signal. The reference signal used to generate the control signal for the ZSH is directly provided by the output signal of the LVDT to prevent the phase shift caused by the LVDT structure. Performances of the proposed technique are discussed in detail and confirmed by the experimental demonstration using commercial devices. The purpose of the proposed technique is emphasized in terms of high accuracy, fast response, simple configuration and low cost.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


LVDT; Zero-Order Sample and Hold Circuit; Peak-Amplitude Finder; Charge Amplifier; Signal Converter; Synchronous Demodulator

Full Text:

PDF


References


K. Ara, A Differential Transformer with Temperature and Excitation-Independent Output, IEEE Trans. Instrumentation and Measurement, vol. IM-21 n. 3, August. 1972, pp. 249 - 255.
http://dx.doi.org/10.1109/tim.1972.4314011

S. C. Saxena and S. B. L. Seksena, A Self-compensated smart LVDT transducer, IEEE Trans. Instrumentation and Measurement, vol. 38 n. 3, June 1989, pp.748-753.
http://dx.doi.org/10.1109/19.32186

R. Pallas-Areny and J . G. Wbster, Sensor and Signal Condition (John Wiley & Sons, 2001, 229-238).

S. Cetinkunt, Mechatronics (John Wiley & Sons, 2006, 227-232).

M. Felix, A. Lizarraga, A. Islas, A. Gonzales, Analysis of a Ferrofluid Core LVDT Displacement Sensor, The 36th Annual Conference on IEEE Industrial Electronics Society, 2010, Glendale USA, pp. 1769-1772.
http://dx.doi.org/10.1109/iecon.2010.5675411

A. Drumea, A. Vasile, M. Comes, M. Blejan, System on Chip Signal Conditioner for LVDT Sensors, Electronics System integration Technology Conference, 2006, Dresden Germany, pp. 629-634.
http://dx.doi.org/10.1109/estc.2006.280070

H. Zumbahlen, Linear Circuit Design Handbook. (Analog Device, Elsevier, 2008, 195-198).
http://dx.doi.org/10.1016/b978-0-7506-8703-4.00008-0

R. M. Ford, R. S. Weissbach and D. R. Loker, A DSP-Based Modified Costas Receiver for LVDT Position Sensors, IEEE Trans. Instrumentation and Measurement, vol.3, May. 2000, pp. 1448-1452
http://dx.doi.org/10.1109/imtc.2000.848714

K. Banerjee, B. Dam, K. Majumdar, A novel FPGA-Based LVDT Signal Condition, IEEE International Symposium on Industrial Electronics, 2013, Taipei, Taiwan.
http://dx.doi.org/10.1109/isie.2013.6563715

R. Casanella, O. Casas, R. Pallas-Areny, Differential synchronous demodulator for modulating, sensors and impedance measurements, Measurement Science and Technology, vol. 16, July 2005, pp. 1637-1643.
http://dx.doi.org/10.1088/0957-0233/16/8/014

R. Casanella, O. Casas, M. Ferrari, V. Ferrari, R. Pallas-Areny, Synchronous demodulator for autonomous sensors, IEEE Trans. Instrumentation and Measurement, vol. 56 n. 4, August. 2007, pp.1219-1223.
http://dx.doi.org/10.1109/tim.2007.899919

D. A. Johns and K. Martin, Analog Integrated Circuit Design (John Wiley & Sons, 1997, 389-391).

C. S. Koukourlis, V. K. Trigonidis, J. N. Sahalos, Differential synchronous demodulation for small-signal amplitude estimation, IEEE Trans. Instrumentation and Measurement, vol. 42 n. 5, October 1993, pp. 926-931.
http://dx.doi.org/10.1109/19.252529

A. Ota, W. Petchmaneelumka, A. Rerkratn and V. Riewruja, Simple resolver demodulation, JSST International Conference on Simulation Technology, 2013, Tokyo, Japan.

J. Tongcharoen, W. Petchmaneelumka, T. Cheypoca, V. Riewruja, Resolver-to-Triangular Wave Converter, SICE Annual Conference, 2014, Sapporo, Japan, pp. 1181-1184.

J.Tongcharoen, W. Petchmaneelumka, V. Riewruja, Low-Cost Resolver-to-DC Converter, The 15th International Conference on Control, Automation and Systems, 2015, Busan, Korea, pp. 1699-1702.
http://dx.doi.org/10.1109/iccas.2015.7364630

A. Ota, W. Petchmaneelumka, T. Cheypoca, A. Rerkratn, V. Riewruja, Front-End Interfacing Circuit for Capacitive Sensor, The 7th International Conference on Information Technology and Electrical Engineering, 2015, Chiang Mai, Thailand, pp. 313-316.
http://dx.doi.org/10.1109/iciteed.2015.7408963

R. Casanella, O. Casas, M. Ferrari, V. Ferrari, R. Pallas-Areny, Synchronous demodulator for autonomous sensors, IEEE Trans. Instrumentation and Measurement, vol. 56, n. 4, August 2007, pp. 1219-1223.
http://dx.doi.org/10.1109/tim.2007.899919

V. Riewruja and A. Rerkratn, Four-quadrant analog multiplier using operational amplifier, International Journal of Electronics, vol. 98, n. 4, 2011, pp. 459-474.
http://dx.doi.org/10.1080/00207217.2010.520155

A. S. Sedra, K. C. Smith, Microelectronic Circuits (Oxford University Press, 2009, 835-839).

D. H. Sheingold, Analog-digital conversion handbook (Prentice-hall, 1986, 564-565).


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize