Open Access Open Access  Restricted Access Subscription or Fee Access

Inverse-Based Current Harmonic Controller for Multiphase PMSMs


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v11i4.8671

Abstract


Multiphase electric machines can provide significant advantages over conventional three-phase machines. Unfortunately, multiphase machines also have a notable disadvantage that even a small voltage excitation of certain frequency components can cause large stator current harmonics. This paper presents an inverse-based current harmonic controller to eliminate the current harmonics. A detailed theoretical analysis of the proposed harmonic controller is given including a comprehensive set of analytical design principles. The robustness of the method is studied with a multi-input multi-output approach based on a structured singular value and H∞ norm analyses. In addition to the theoretical work, the performance of the harmonic controller is investigated with experimental results from a dual three-phase permanent magnet synchronous machine (PMSM). The analysis and results of this paper show that the inverse-based current harmonic controller provides a robust and high-performance method to eliminate the current harmonics in multiphase PMSMs.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


Current Control; Harmonics; Multiphase; Robustness; Stability

Full Text:

PDF


References


E. Levi, “Advances in converter control and innovative exploitation of additional degrees of freedom for multiphase machines,” IEEE Trans. Ind. Electron., accepted for publication in a future issue.
http://dx.doi.org/10.1109/tie.2015.2434999

F. Barrero and M. Duran, “Recent advances in the design, modeling and control of multiphase machines-part 1,” IEEE Trans. Ind. Electron., accepted for publication in a future issue.
http://dx.doi.org/10.1109/tie.2015.2448211

M. Duran and F. Barrero, “Recent advances in the design, modeling and control of multiphase machines-part 2,” IEEE Trans. Ind. Electron., accepted for publication in a future issue.
http://dx.doi.org/10.1109/tie.2015.2448211

S. Williamson and S. Smith, “Pulsating torque and losses in multiphase induction machines,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 986–993, Jul./Aug. 2003.
http://dx.doi.org/10.1109/tia.2003.813722

G. Singh, K. Nam, and S. Lim, “A simple indirect field-oriented control scheme for multiphase induction machine,” IEEE Trans. Ind. Electron., vol. 52, no. 4, pp. 1177-1184, Aug. 2005.
http://dx.doi.org/10.1109/tie.2005.851593

A. Boglietti, R. Bojoi, A. Cavagnino, and A. Tenconi, “Efficiency analysis of PWM inverter fed three-phase and dual three-phase high frequency induction machines for low/medium power applications,” IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 2015–2023, May 2008.
http://dx.doi.org/10.1109/tie.2008.918489

M. Duran, I. Gonzales, M. Bermudez, F. Barrero, H. Guzman, and M. Arahal, “Optimal fault-tolerant control of six-phase induction motor drives with parallel converters,” IEEE Trans. Ind. Electron., accepted for publication in a future issue.
http://dx.doi.org/10.1109/tie.2015.2461516

I. Gonzales, M. Duran, H. Che, E. Levi, M. Bermudez, and F. Barrero, “Fault-tolerant operation of six-phase energy conversion systems with parallel machine-side converters,” IEEE Trans. Power Electron., accepted for publication in a future issue.
http://dx.doi.org/10.1109/tpel.2015.2455595

H. Che, M. Duran, E. Levi, M. Jones, W. Hew, and N. Rahim, “Postfault operation of an asymmetrical six-phase induction machine with single and two isolated neutral points,” IEEE Trans. Power Electron., vol. 29, no. 10, pp. 5406–5416, Oct. 2014.
http://dx.doi.org/10.1109/tpel.2013.2293195

E. Levi, “Multiphase electrical machines for variable-speed applications,” IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 1893–1909, May 2008.
http://dx.doi.org/10.1109/tie.2008.918488

K. Marouani, L. Baghli, D. Hadiouche, A. Kheloui, and A. Razzoug, “A new PWM strategy based on a 24-sector vector space decomposition for a six-phase VSI-fed dual stator induction motor,” IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 1910–1920, May 2008.
http://dx.doi.org/10.1109/tie.2008.918486

H. Che, E. Levi, M. Jones, M. Duran, W. Hew, and N. Rahim, “Current control methods for an asymmetrical six-phase induction motor drive,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 407–417, Jan. 2014.
http://dx.doi.org/10.1109/tpel.2013.2248170

Y. Hu, Z. Zhu, and K. Liu, “Current control for dual 3-phase pm synchronous motors accounting for current unbalance and harmonics,” IEEE Trans. Emerg. Sel. Topics Power Electron. vol. 2, no. 2, pp. 272–284, Jun. 2014.
http://dx.doi.org/10.1109/jestpe.2014.2299240

F. Yuan and S. Huang, “A hybrid current controller for dual-three-phase permanent magnet synchronous motors,” IEEJ Trans. Electr. Electron. Eng., vol. 9, no. 2, pp. 214–218, Mar. 2014.
http://dx.doi.org/10.1002/tee.21958

A. Tessarolo and C. Bassi, “Stator harmonic currents in VSI-fed synchronous motors with multiple three-phase armature windings,” IEEE Trans. Energy Convers., vol. 25, no. 4, pp. 974–982, Dec. 2010.
http://dx.doi.org/10.1109/tec.2010.2061852

J. Karttunen, S. Kallio, P. Peltoniemi, P. Silventoinen, and O. Pyrhönen. ”Decoupled vector control scheme for dual three-phase permanent magnet synchronous machines,” IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2486–2494, May 2014.
http://dx.doi.org/10.1109/tie.2013.2270219

Y. Yang, K. Zhou, H. Wang, F. Blaabjerg, D. Wang, and B. Zhang, “Frequency adaptive selective harmonic control for grid-connected inverters,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3912–3924, Jul. 2015.
http://dx.doi.org/10.1109/tpel.2014.2344049

Z. Zou, K Zhou, Z Wang, and M. Cheng, "Frequency-Adaptive Fractional-Order Repetitive Control of Shunt Active Power Filters," IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1659–1668, Mar. 2015.
http://dx.doi.org/10.1109/tie.2014.2363442

C. Lascu, L. Asiminoaei, I. Boldea, and F. Blaabjerg, “Frequency response analysis of current controllers for selective harmonic compensation in active power filters,” IEEE Trans. Ind. Electron., vol. 56, no. 2, pp. 337–347, Feb. 2009.
http://dx.doi.org/10.1109/tie.2008.2006953

A. Yepes, F. Freijedo, O. Lopez, and J. Doval-Gandoy, “Analysis and design of resonant current controllers for voltage-source converters by means of nyquist diagrams and sensitivity function,” IEEE Trans. Ind. Electron., vol. 58, no. 11, pp. 5231–5250, Nov. 2011.
http://dx.doi.org/10.1109/tie.2011.2126535

Q.-N. Trinh and H.-H. Lee, “Improvement of unified power quality conditioner performance with enhanced resonant strategy,” IET Gen. Trans. Dist., vol. 8, no. 12, pp. 2114–2123, Dec. 2014.
http://dx.doi.org/10.1049/iet-gtd.2013.0636

H. Yi, F. Zhuo, Y. Zhang, Y. Li, W. Zhan, W. Chen, and J. Liu, “A source-current-detected shunt active power filter control scheme based on vector resonant controller,” IEEE Trans. Ind. Appl., vol. 50, no. 3, pp. 1953–1965, May/Jun. 2014.
http://dx.doi.org/10.1109/tia.2013.2289956

H. Nian and Y. Song, “Optimized parameter design of proportional integral and resonant current regulator for doubly fed induction generator during grid voltage distortion,” IET Renew. Power Gener., vol. 8, no. 3, pp. 299–313, Apr. 2014.
http://dx.doi.org/10.1049/iet-rpg.2012.0369

H. Nian and Y. Song, “Direct power control of doubly fed induction generator under distorted grid voltage,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 894–905, Feb. 2014.
http://dx.doi.org/10.1109/tpel.2013.2258943

C. Xia, B. Ji, and Y. Yan, “Smooth speed control for low speed high torque permanent magnet synchronous motor using proportional integral resonant controller,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2123–2134, Apr. 2015.
http://dx.doi.org/10.1109/tie.2014.2354593

A. Yepes, J. Malvar, A. Vidal, O. Lopez, and J. Doval-Gandoy, “Current harmonic compensation based on multi-resonant control in synchronous frames for symmetrical n-phase machines,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 2708–2720, May 2015.
http://dx.doi.org/10.1109/tie.2014.2365155

J. Karttunen, S. Kallio, P. Peltoniemi, and P. Silventoinen, ”Current harmonic compensation in dual three-phase PMSMs using a disturbance observer,” IEEE Trans. Ind. Electron., accepted for publication in a future issue.
http://dx.doi.org/10.1109/tie.2015.2461519

K. Wang, Z. Zhu, Y. Ren, and G. Ombach, “Torque improvements of dual-three-phase permanent magnet machine with 3rd harmonic current injection,” IEEE Trans. Ind. Electron., vol. 62, no. 11, pp. 6833–6844, Nov. 2015.
http://dx.doi.org/10.1109/tie.2015.2442519

Y. Ren and Z. Zhu, “Reduction of both harmonic current and torque ripple for dual-three-phase permanent magnet synchronous machine using modified switching-table-based direct torque control,” IEEE Trans. Ind. Electron., vol. 62, no. 11, pp. 6671–6683, Nov. 2015.
http://dx.doi.org/10.1109/tie.2015.2448511

C. Zhou, G. Yang and J. Su, “PWM strategy with minimum harmonic distortion for dual-three-phase permanent magnet synchronous motor drives operating in the overmodulation region,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1367–1380, Feb. 2016.
http://dx.doi.org/10.1109/tpel.2015.2414437

F. Baneira, A. Yepes, O. Lopez and J. Doval-Gandoy, “Estimation method of stator winding temperature for dual-three-phase machines based on dc-signal injection,” IEEE Trans. Power Electron., accepted for publication in a future issue.
http://dx.doi.org/10.1109/tpel.2015.2479410

S. Kallio, M. Andriollo, A. Tortella, and J. Karttunen, ”Decoupled d-q model of double-star interior permanent magnet synchronous machines,” IEEE Trans. Ind. Electron., vol. 60, no. 6, pp. 2486–2494, Jun. 2013.
http://dx.doi.org/10.1109/tie.2012.2216241

Y. Zhao and T.A. Lipo, “Space vector PWM control of dual three-phase induction machine using vector space decomposition,” IEEE Trans. Ind. Appl., vol. 31, no. 5, pp. 1100–1109, Sept./Oct. 1995.
http://dx.doi.org/10.1109/28.464525

S. Kallio, J. Karttunen, P. Peltoniemi, P. Silventoinen, and O. Pyrhönen, “Online estimation of double-star ipm machine parameters using rls algorithm,” IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 4519–4530, Sept. 2014.
http://dx.doi.org/10.1109/tie.2013.2290761

S. Kallio, J. Karttunen, P. Peltoniemi, P. Silventoinen, and O. Pyrhönen, “Determination of the inductance parameters for the decoupled d–q model of double-star permanent-magnet synchronous machines,” IET Electr. Power Appl., vol. 8, no. 2, pp. 39–49, Feb. 2014.
http://dx.doi.org/10.1049/iet-epa.2013.0195

J. Karttunen, S. Kallio, P. Peltoniemi, and P. Silventoinen, “Transforming dynamic system models between two-axis reference frames rotating at different angular frequencies,” in 16th European Conference on Power Electronics and Applications (EPE'14-ECCE Europe), Lappeenranta, 2014, pp. 1–10.
http://dx.doi.org/10.1109/epe.2014.6911012

S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design, Second Edition, Chichester, England: Wiley. 2005.

L. Harnefors and H.-P. Nee, “Model-based current control of AC machines using the internal model control method,” IEEE Trans. Ind. Appl., vol. 34, no. 1, pp. 133–141, Jan./Feb. 1998.
http://dx.doi.org/10.1109/28.658735

R. Bojoi, L. Limongi, F. Profumo, D. Roiu and A. Tenconi, “Analysis of current controllers for active power filters using selective harmonic compensation schemes,” IEEJ Trans. Electr. Electron. Eng., vol. 4, no. 2, pp. 139–157, Mar. 2009.
http://dx.doi.org/10.1002/tee.20392

F. Freijedo, A. Vidal, A. Yepes, J. Guerrero, O. Lopez, J. Malvar, and J. Doval-Gandoy, “Tuning of synchronous-frame PI current controllers in grid-connected converters operating at a low sampling rate by MIMO root locus,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 5006–5017, Aug. 2015.
http://dx.doi.org/10.1109/tie.2015.2402114

I. Petersen and R. Tempo, “Robust control of uncertain systems: classical results and recent developments,” Automatica, vol. 50, no. 5, pp. 1315–1335, May. 2014.
http://dx.doi.org/10.1016/j.automatica.2014.02.042

K. Zhou, J. Doyle, and K. Glover, Robust and Optimal Control, Prentice-Hall, Upper Saddle River, NJ, USA, 1996.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize