Open Access Open Access  Restricted Access Subscription or Fee Access

Electrical Characteristics of an Argon Glow Discharge in the Presence of Metastable Atom Density


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v11i2.8230

Abstract


The paper deals with numerical modelling studies of DC glow discharge in argon with metastable atom density. The values of pressure is between 133.32 Pa and 330 Pa, and voltage ranges from 250 to 400 V in the case of input data taken from the Boltzmann equation in multi term approximation. In the frameworks, an analysis of glow discharge characteristics is carried out in the case of input data obtained from BOLISG+ code. As conclusion of these different input data in the same gas the output results are different and they appear in the cathode region. The spatio-temporal distributions of electron and ion densities, the potential and electric field, the mean electron energy and the metastable atom density are shown. A 1D fluid model is used to solve self-consistently the first three moments of the Boltzmann equation coupled with the Poisson's equation. The results are validated with those obtained by recent papers.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


Metastable Atom Density; Glow Discharge; Fluid Model; Input Data

Full Text:

PDF


References


B. Chapman, Glow Discharge Processes (John Wiley Sons, New York, 1980).

W. W. Harrison, Glow Discharge Mass Spectrometry (Wiley, New York, 1988).
http://dx.doi.org/10.1039/ja9880300867

R. K. Marcus, Glow Discharge Spectroscopies (Plenum Press, New York, 1993).
http://dx.doi.org/10.1007/978-1-4899-2394-3

F. Bouanaka, S. Rebiai, Effect of Secondary Electron Emission on Argon Glow Discharge Characteristics, (2013) International Review of Physics (IREPHY), 7 (1), pp. 81-86.

V. A. Lisovskiy, K. P. Artushenko, V. D. Yegorenkov, Reduced electric field in the positive column of the glow discharge in argon, (2015) Vacuum, 122(A), pp.75-81.
http://dx.doi.org/10.1016/j.vacuum.2015.09.009

R. El-Koramy, A. Amry, A. Gabre, Microscopic Study of Anode and Cathode Corona in Argon, (2013) International Review of Physics (IREPHY), 7 (1), pp. 30-36.

P. G. Browne, M. H. Dunn, Metastable Densities and Excitation Processes in the He-Cd Laser Discharge, (1973) J. Phys. B, 6 (6), pp.1103-1117.
http://dx.doi.org/10.1088/0022-3700/6/6/025

T. Kubota, Y. Morisaki, A. Ohsawa, M. Ohuchi, The Axial Distributions of Optical Emission and Metastable Density: Comparison between Experiments with DC and RF Helium Glow Discharges, (1992) J. Phys. D: Appl. Phys, 25 (4), pp.613-619.
http://dx.doi.org/10.1088/0022-3727/25/4/007

A. V. Phelps, J. P. Molnar, Lifetimes of Metastable States of Noble Gases, (1953) Phys. Rev, 89 (6), pp.1202-1208.
http://dx.doi.org/10.1103/physrev.89.1202

M. M. Becker, D. Loffhagen, W. Schmidt, A stabilized Finite Element Method for Modeling of gas Discharges, 2009, Comp. Phys. Com, 180 (8), pp.1230-1241.
http://dx.doi.org/10.1016/j.cpc.2009.02.001

N. B. Kolokolov, A. A. Kudrjavtsev, A. B. Blagoev, Interaction Processes with Creation of Fast electrons in the Low Temperature Plasma, (1994) Phys. Scripta, 50 (4), pp.371-381.
http://dx.doi.org/10.1088/0031-8949/50/4/010

Ph. Belenguer, J.P. Boeuf, Transition between different regimes of rf glow discharges, (1990) Phys. Rev. A, 41 (8), pp.4447- 4459.
http://dx.doi.org/10.1103/physreva.41.4447

Z. Donkó, Hybrid model of a rectangular hollow cathode discharge, (1998) Phys. Rev. E, 57 (6), pp.7126-7137.
http://dx.doi.org/10.1103/physreve.57.7126

D. Marié, K. Kutasi, G. Malovié, Z. Donkó, Z. Lj. Petrović, Axial emission profiles and apparent secondary electron yield in abnormal glow discharges in argon, (2002) Eur. Phys. J. D, 21, pp.73-81.
http://dx.doi.org/10.1140/epjd/e2002-00179-x

A. V. Phelps, Z. Lj. Petrović, Cold-cathode discharges and breakdown in argon: surface and gas phase production of secondary electrons, (1999) Plasma Sources Sci. Technol, 8 (R), pp. 21-44.
http://dx.doi.org/10.1088/0963-0252/8/3/201

A. Bouchikhi , Two-dimensional Nnumerical Simulation of the DC Glow Discharge in the Normal mode and with Einstein’s relation of Electron Diffusivity, (2012) Plasma Sci. Technol, 14(11), pp. 965-973.
http://dx.doi.org/10.1088/1009-0630/14/11/04

M. M. Becker, D. Loffhagen, Enhanced Reliability of drift- diffusion Approximation for Electrons in Fluid Models for Nonthermal Plasmas, (2013) AIP ADVANCES, 3(1), pp. 012108-1-012108-10.
http://dx.doi.org/10.1063/1.4775771

F. Sigeneger, R. Winkler, Nonlocal Transport and Dissipation Properties of Electrons in Inhomogeneous Plasmas, (1999) IEEE Trans. Plasma Sci, 27 (5), pp.1254-1261.
http://dx.doi.org/10.1109/27.799801

Abdelaziz Bouchikhi, 2D Fluid Approaches of a DC Normal Glow Discharge: Current Densities, (2016) accepted in Przeglad Eektrotechniczny

D. L. Scharfetter, H. K. Gummel, Large-signal analysis of a Silicon Read Diode Oscillator, (1969) IEEE Trans. Electron Devices, 16 (1), pp. 64-77.
http://dx.doi.org/10.1109/t-ed.1969.16566

A. Bouchikhi, A. Hamid, A. Flitti, A. Tilmatine, The Application of the 2 order Fluid Model for the Townsend’s Discharge Study, (2008) Acta Electrotehnica, 48(2), pp. 404- 411.

A. Bouchikhi, A. Hamid, 2D DC Subnormal Glow discharge in Argon, (2010) Plasma Sci. Technol, 12(1), pp. 59-66.
http://dx.doi.org/10.1088/1009-0630/12/1/13

A. Fiala, L. C. Pitchford, J. P. Boef, Two-dimensional, Hybrid model of low-pressure Glow Discharges, (1994) Phys. Rev. E, 49 (6), pp.5607-5622.
http://dx.doi.org/10.1103/physreve.49.5607

G. Hagelaar, L. Pitchford, Solving the Boltzmann equation to obtain Electron Transport Coefficients and Rate Coefficients for Fluid Models, (2005) Plasma Sources Sci. Technol, 14 (4), pp.722-733.
http://dx.doi.org/10.1088/0963-0252/14/4/011


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize