Open Access Open Access  Restricted Access Subscription or Fee Access

Cascade Multilevel Inverter Using Sub Multi-Cells


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v11i2.8076

Abstract


Multilevel inverters (MLI) are one of the selected areas in the industry for medium and high power application. The real challenge of MLI is to generate more voltage levels utilizing less voltage sources and power semiconductor switches. This paper presents a new topology of cascaded multilevel inverter with sub multi-cells. This new structure is optimized based on number of powers witches, voltage sources. Moreover the topology enhancement of this cascaded multilevel inverter considering various factors such as the number of power semiconductor devices, the voltage levels of output and the switch standing voltage is given. Since the proposed topology is generalized, the traditional cascaded multilevel inverters can be derived from the proposed multilevel inverter and it offers a provision to propose the desired cascaded multilevel inverter. In addition to that, some facts related to the proposed topologies are proved mathematically. It has the capacity to produce increased output voltage levels with less sources voltages and switches. The proposed topology will generate twenty five output voltage levels with twelve numbers of switches. Further, to figure out the value of voltage sources, an algorithm is presented. To check the operation and execution of the proposed structure, MATLAB/Simulink is used for the simulation and to validate these results a hardware prototype is developed and results are presented.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


DC Voltage Sources; Power Switches; Multilevel Inverter; Switching Components; High Quality Output Voltages

Full Text:

PDF


References


J. Rodriguez, L. G. Franquelo, S. Kouro, J. I. Leon, R. C. Portillo, M. A. M. Prats, and M. A. Perez, “Multilevel converters: An enabling technology for high-power applications,” Proc. IEEE, vol. 97, n. 11, Nov. 2009, pp. 1786–1817.
http://dx.doi.org/10.1109/jproc.2009.2030235

L. G. Franquelo, J. Rodriguez, J. I. Leon, S. Kouro, R. Portillo, and M. A. M. Prats, “The age of multilevel converters arrives,” IEEE Ind. Electron. Mag., vol. 2, n. 2, Jun. 2008, pp. 28–39.
http://dx.doi.org/10.1109/mie.2008.923519

J. Rodriguez, J.S. Lai, F.Z. Peng, Multilevel inverters: a survey of topologies, controls, and applications, IEEE Transactions on Industrial Electronics, vol. 49, n.4 , jan.2002, pp. 724–738.
http://dx.doi.org/10.1109/tie.2002.801052

J. Rodriguez, S. Bernet, B. Wu, J. O. Pontt, and S. Kouro, “Multilevel voltage-source-converter topologies for industrial medium-voltage drives,” IEEE Trans. Ind. Electron., vol. 54, n. 6, Dec. 2007, pp. 2930–2945.
http://dx.doi.org/10.1109/tie.2007.907044

E. Babaei, M.F Kangarlu, M.H Ali, “Asymmetrical multilevel converter topology with reduced number of components”, IET Power Electron, Vol. 6, n. 6, Jan.2013, pp. 1188–1196
http://dx.doi.org/10.1049/iet-pel.2012.0497

J. Rodriguez, B. Wu, S. Bernet, N. Zargari, J. Rebolledo, J. Pontt, and P. Steimer, “Design and evaluation criteria for high power drives,” in Conf. Rec. IEEE IAS Annu. Meeting, Oct. 2008, pp. 1–9.
http://dx.doi.org/10.1109/08ias.2008.341

Shuai Lu, Sébastien Mariéthoz, and Keith A. Corzine, “Asymmetrical Cascade Multilevel Converters With Noninteger or Dynamically Changing DC Voltage Ratios: Concepts and Modulation Techniques,” IEEE Trans. Ind. Electron., vol. 57,no.7, Jul. 2010, pp. 2211–2218.
http://dx.doi.org/10.1109/tie.2010.2041734

J. Ebrahimi, E. Babaei, and G. B. Gharehpetian, “A new topology of cascaded multilevel converters with reduced number of components for high-voltage applications,” IEEE Trans. Power Electron., vol. 26, n. 11, Nov. 2011, pp. 3109–3118.
http://dx.doi.org/10.1109/tpel.2011.2148177

E. Babaei, “A cascade multilevel converter topology with reduced number of switches”, IEEE Transactions on Power Electronics, vol.23 n.6, 2008, pp. 2657–2664.
http://dx.doi.org/10.1109/tpel.2008.2005192

Y. Hinago, H. Koizumi, A single phase multilevel inverter using switched series/parallel dc voltage sources, IEEE Transactions on Industrial Electronics vol.58, n.8, 2010, pp.2643–2650.
http://dx.doi.org/10.1109/tie.2009.2030204

N. Farokhnia, S.H. Fathi, N. Yousefpoor, and M.K. Bakhshizadeh, “Minimizations of total harmonic distortion in a cascaded multilevel inverter by regulating of voltages dc sources,” IET Power Electron., vol. 5, n. 1, june.2012, pp. 106-114.
http://dx.doi.org/10.1049/iet-pel.2011.0092

Laali, S., Abbaszadeh, K., Lesani, H., Control of asymmetric cascaded multilevel inverters based on charge balance control methods, (2011) International Review of Electrical Engineering (IREE), 6 (2), pp. 522-528.

Mariusz Malinowski, IEEE, K. Gopakumar, Jose Rodriguez, and Marcelo A. Pérez, “A Survey on Cascaded Multilevel Inverters,” IEEE Trans. Ind. Electron., vol. 57,no.7, , Jul. 2010, pp. 2197–2206.
http://dx.doi.org/10.1109/tie.2009.2030767

Ebrahim Babaei, Mohammad Farhadi Kangarlu, Farshid Najaty Mazgar, “Symmetric and asymmetric multilevel inverter topologies with reduced switching devices”, Electric power research, vol.86, 2012, pp. 122-130
http://dx.doi.org/10.1016/j.epsr.2011.12.013

E. Babaei, S.H. Hosseini, “New cascaded multilevel inverter topology with minimum number of switches”, Elsevier Journal of Energy Conversion and Management vol.50 n.11, 2009, pp. 2761–2767.
http://dx.doi.org/10.1016/j.enconman.2009.06.032

E. Babaei, S.H. Hosseini, “Charge balance control methods for a class of fundamental frequency modulated asymmetric cascaded multilevel inverters”, Journal of Power Electronics vol.11, n.6, june.2011, pp. 811–818.
http://dx.doi.org/10.6113/jpe.2011.11.6.811

J. Dixon, A.A. Breton, F.E. Rios, J. Rodriguez, J. Pontt, M.A. Perez, “High power machine drive using non redundant 27-level inverters and active front end rectifiers”, IEEE Transactions on Power Electronics, vol.22 n.6, May.2007, pp. 2527–2533.
http://dx.doi.org/10.1109/tpel.2007.909276

M. Narimani and G. Moschopoulos, “A novel single-stage multilevel type full-bridge converter,” IEEE Trans. Ind. Electron., vol. 60, n. 1, Jan. 2013, pp. 31– 42.
http://dx.doi.org/10.1109/tie.2012.2183839

N. Abd Rahim, M. F. Mohamad Elias, andW. P. Hew, “Transistor-clamped H-bridge based cascaded multilevel inverter with new method of capacitor voltage balancing,” IEEE Trans. Ind. Electron., vol. 60, n. 8, Aug. 2013, pp. 2943– 2956.
http://dx.doi.org/10.1109/tie.2012.2200213

Mohammed, B.S., Ibrahim, R.B., Perumal, N., Rama Rao, K.S., Comparison of multi-carriers based PWM for multilevel converters, (2014) International Review on Modelling and Simulations (IREMOS), 7 (3), pp. 363-378.

Muthukumar, K., Anandhi, T.S., Natarajan, S.P., 81 levels trinary hybrid cascaded multilevel inverter, (2014) International Review of Automatic Control (IREACO), 7 (6), pp. 584-590.
http://dx.doi.org/10.15866/ireaco.v7i6.4602

Ebrahim Babaei, Mohammad Farhadi Kangarlu, Mehran Sabahi,Mohammad Reza Alizadeh Pahlavani, “Cascaded multilevel inverter using sub-multilevel cells”, Electric Power Systems Research, Vol. 96, March 2013, pp. 101-110.
http://dx.doi.org/10.1016/j.epsr.2012.10.010

G. Waltrich and I. Barbi, “Three-phase cascaded multilevel inverter using power cells with two inverter legs in series,” IEEE Trans. Ind. Appl., vol. 57, n. 8, Aug. 2010, pp. 2605–2612.
http://dx.doi.org/10.1109/tie.2010.2043040

E. Babaei and S. H. Hosseini, “New cascaded multilevel inverter topology with minimum number of switches,” Energy Convers. Manage., vol. 50, n. 11, Nov. 2009, pp. 2761–2767.
http://dx.doi.org/10.1016/j.enconman.2009.06.032

M. Farhadi Kangarlu and E. Babaei, “A generalized cascaded multilevel inverter using series connection of submultilevel inverters,” IEEE Trans. Power Electron., vol. 28, n. 2, Feb. 2013, pp. 625–636.
http://dx.doi.org/10.1109/tpel.2012.2203339


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize