Open Access Open Access  Restricted Access Subscription or Fee Access

Thermal Modeling of a Hybrid Excitation Synchronous Generator with Alternated Current Linkages for Stand-Alone Power Supply


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v10i5.7257

Abstract


This paper presents the thermal modelling and analysis of a hybrid excitation synchronous generator with alternated current linkages (HESG-ACL) for stand-alone power supply. The HESG-ACL belongs to a class of hybrid excitation synchronous machines (HESMs), which combine the merits of electrically excited synchronous machines (EESMs) and permanent magnet synchronous machines (PMSMs). To confirm the performance and thermal behaviour of the HESG-ACL, an experimental prototype (69 kVA apparent power) equipped with thermal sensors was built and tested. A description of the HESG-ACL is given. The thermal analysis of the HESG-ACL is carried out based on the thermal resistance network model. The results obtained from the thermal model are verified by the experimental results.
Copyright © 2015 Praise Worthy Prize - All rights reserved.

Keywords


Hybrid Excitation Synchronous Generator; Synchronous Generator; Thermal Analysis; Thermal Network Model; Stand-Alone Power Supply

Full Text:

PDF


References


United Nations Conference on Environment and Development (UNCED) held in Rio de Janeiro, Brazil, 3 to 14 June 1992, Agenda 21, http://sustainabledevelopment.un.org/index.php?page=view&nr=23&type=400&menu=35

T. Theubou, R. Wamkeue, I. Kamwa, Dynamic model of diesel generator set for hybrid wind-diesel small grids applications, 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–4, 2012.
http://dx.doi.org/10.1109/ccece.2012.6334849

K. Kusakana, H.J. Vermaak, Hybrid diesel generator - battery systems for offgrid rural applications, IEEE International Conference on Industrial Technology (ICIT), pp. 839–844, 2013.
http://dx.doi.org/10.1109/icit.2013.6505781

Low speed engines technical paper, MAN Diesel.
http://dx.doi.org/10.1016/b978-0-7506-8984-7.00015-1

http://mandieselturbo.com/files/news/filesof16119/tech_paper_low_speed.pdf

T. Takaishi, A. Numata, R. Nakano, K. Sakaguchi, Approach to high efficiency diesel and gas engines, Technical review, vol. 45, n. 1, Mar. 2008.

http://www.mhi.co.jp/technology/review/pdf/e451/e451021.pdf

N.A. Soldatenkova and L.F. Boronina, Calculation of salient-pole synchronous machines, Saint-Petersburg State Polytechnic University Publisher, 1993, p. 6 (in Russian).

Y. Amara, L. Vido, M. Gabsi, E. Hoang, A. Hamid Ben Ahmed, M. Lecrivain, Hybrid excitation synchronous machines: energy-efficient solution for vehicles propulsion, IEEE Transactions on Vehicular Technology, vol. 58, n. 5, Jun. 2009, pp. 2137–2149.
http://dx.doi.org/10.1109/tvt.2008.2009306

K. Kamiev, J. Pyrhönen, J. Nerg, V. Zaboin, J. Tapia, Modeling and testing of an armature-reaction-compensated permanent magnet synchronous generator (ARC-PMSG),IEEE Transactions on Energy Conversions, vol. 28, n. 4, Dec. 2013, pp. 849–859.
http://dx.doi.org/10.1109/tec.2013.2286836

Y. Alexandrova, Wind turbine direct-drive permanent-magnet generator with direct liquid cooling for mass reduction, Acta Universitatis Lappeenrantaenis No.580, Thesis for the degree of Doctor of Science (Technology), Lappeenranta University of Technology, 2014.

G. Kylander, Thermal modelling of small cage induction motors, Ph.D. dissertation, School of Electrical and Computer Engineering, Chalmers University of Technology, Göteborg, Sweden, 2005.

M. Rilla, Design of salient pole PM synchronous machines for a vehicle traction application – analysis and implementation, Acta Universitatis Lappeenrantaensis No. 497, Thesis for the degree of Doctor of Science (Technology), Lappeenranta University of Technology, 2012.

J. Pyrhönen, T. Jokinen, V. Hrabovcova, Design of rotating electrical machines, John Wiley & Sons. 512 pages. ISBN 13: 9780470695166.
http://dx.doi.org/10.1002/9781118701591

V.T. Kasyanov, Design of salient-pole synchronous machines, VMAKV (in Russian), 1951.

International Electrotechnical Commission Standard 60085,Electrical Insulation - Thermal Evaluation and Designation, 3rd edition, 2004, p. 11, Table 1.

M. Polikarpova, P. Röyttä, J. Alexandrova, S. Semkent, J. Nerg, J. Pyrhönen, Thermal design and analysis of a direct-water cooled direct drive permanent magnet synchronous generator for high-power wind turbine application, IEEE International Conference on Electrical Machines (ICEM), 2012.
http://dx.doi.org/10.1109/icelmach.2012.6350075

C. Mademlis, N. Margaris, J. Xypteras, Magnetic and thermal performance of a synchronous motor under loss minimization control, IEEE Transactions on Energy Conversion,vol. 15, n. 2, 2000, pp. 130–140.
http://dx.doi.org/10.1109/60.866990

R. Ibtiouen, N. Nouali, M. Benhaddadi, Application of lumped parameters and finite element methods to the thermal modelling of an induction motor, IEEE Internation Electric Machines and Drives Conference, 2001, pp.505-507.
http://dx.doi.org/10.1109/iemdc.2001.939354

J. Nerg, M. Rilla, J. Pyrhönen, Thermal analysis of radial-flux electrical machines with a high power density, IEEE Transactions on Industrial Electronics, vol. 55, n. 20, 2008, pp. 3543–3554.
http://dx.doi.org/10.1109/tie.2008.927403


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize