Open Access Open Access  Restricted Access Subscription or Fee Access

Optimization of Mover Acceleration in DC Tubular Linear Direct-Drive Machine Using Response Surface Method


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v10i4.6274

Abstract


This paper presents a new analytical model for both magnetic flux density and thrust force in a linear direct-drive machine. The model is then used to design a tubular linear direct drive machine (TLDDM) by optimizing its effective parameters. Although the machine has many applications when it works as a motor, but the same design can be used when it works as a generator, where it has applications in renewable energy and sustainable systems. Two-dimensional finite element method (FEM) is used for numerical analysis. Magnetic flux density and thrust force computed numerically shows a good agreement with the values resulted from proposed analytical model. This research, investigates the effect of some geometrical dimensions of Tubular Linear Direct-Drive Machine (TLDDM). The sensitivity analysis of parameters by response surface method (RSM) highlights the influence of effective parameters and their interactions. Permanent magnet (PM) radius, PM length, air gap, coil thickness, and current density of phases are effective factors on Mover’s acceleration. It is found that lower air gap, higher coil thickness and longer PM cause higher ratio of maximum thrust force to mover’s mass. It is shown that RSM can predict the optimum acceleration with error of 6%. The general shape of thrust force in different current densities is also confirmed by experimental results.
Copyright © 2015 Praise Worthy Prize - All rights reserved.

Keywords


Analytical Analysis; DC Tubular Linear Direct-Drive Motor; Finite Element Method (FEM); Response Surface Method (RSM)

Full Text:

PDF


References


H Yajima, H Wakiwaka, K Minegishi, N Fujiwara, K Tamura “Design of linear DC motor for high-speed positioning” , Sensors and Actuators A: Physical, Volume 81, Issues 1–3, 2000, pp. 281-284.
http://dx.doi.org/10.1016/s0924-4247(99)00175-2

M.F.Hsieh, K.H. Hu “Analysis of a tubular linear motor with soft magnetic composites for reciprocating compressors”, Journal of Applied Physics, 103, 2008, p. 07F112.
http://dx.doi.org/10.1063/1.2830542

J. Wang, T. Ibrahim, and D. Howe “Prediction and measurement of iron loss in a short-stroke, single-phase, tubular permanent magnet machine”, IEEE Transaction on Magnetics, Vol. 46, No. 6, 2010, pp. 1315 -1318.
http://dx.doi.org/10.1109/tmag.2010.2042685

J. Wang, D. Howe, and Z. Lin “Design Optimization of short-stroke single-phase tubular permanent-magnet motor for refrigeration applications” , IEEE Transaction on Magnetics, Vol. 57, No. 1, 2010, pp. 327-334.
http://dx.doi.org/10.1109/tie.2009.2025710

C. Weißbacher, H. Stelzer, and K. Hameyer “Application of a tubular linear actuator as an axial magnetic bearing”, IEEE/ASME Transaction on Mechatronics, Vol. 15, No. 4, 2010, pp. 615-622.
http://dx.doi.org/10.1109/tmech.2009.2031111

S. Lee, and W.J.Kim, “Active suspension control with direct-drive tubular linear brushless permanent-magnet motor” IEEE Transaction on Control Systems Technology, Vol. 18, No. 4, 2010, pp. 859-870.
http://dx.doi.org/10.1109/tcst.2009.2030413

B.L.J. Gysen, T.P.J. Van der Sande, J.J. H. Paulides, and E. A. Lomonova, “Efficiency of a Regenerative Direct-Drive Electromagnetic Active Suspension” IEEE Transactions on Vehicular Technology, Vol. 60, No. 4, 2011, pp. 1384-1393.
http://dx.doi.org/10.1109/tvt.2011.2131160

J. Ji, W. Zhao , L. Guohai, Y. Shen , W. Fangqun “High reliability linear drive device for artificial hearts”, Journal of Applied Physics, Vol.111, Issue 7, 2012, pp. 07E729 - 07E729-3.
http://dx.doi.org/10.1063/1.3678302

C. Urban, R. Günther, T. Nagel, R. Richter, and R. Witt “Development of a Bendable Permanent-Magnet Tubular Linear Motor”, IEEE Transaction on Magnetics, Vol. 48, No. 8, 2012, pp. 2367 -2373.
http://dx.doi.org/10.1109/tmag.2012.2190613

W.J Kim, B.C. Murphy, “Development of a novel direct-drive tubular linear brushless permanent-magnet motor” International Journal of Control, Automation, and Systems, Vol. 2, No. 3, 2004, pp. 279-288.
http://dx.doi.org/10.1109/ias.2003.1257779

A. Naimzad, Y. Hojjat and M.Ghodsi, “Study on MR Nanocomposites to develop a miniature gripper”, Proc. Int. Conf. on Actuator (Actuator 12), 2012, Bermen, Germany, p 616.

A.Naimzad , Y.Hojjat and M.Ghodsi, “Attempts to design a miniature gripper using Magneto-Rheological Nanocomposites (MRNCs)”, Proc. Int. Cong. on Nanoscience& Nanotechnology (ICNN 2012),2012, Kashan, p 488.

M. G. Lee, S. Q. Lee, D. Gweon “Analysis of Halbach magnet array and its application to linear motor” , Mechatronics, Vol.14, Issue 1, 2004, pp. 115-128.
http://dx.doi.org/10.1016/s0957-4158(03)00015-1

S.M.Jang, J.Y.Choi, H.W Cho, and S.H Lee “Thrust analysis and measurements of tubular linear actuator with cylindrical Halbach array” IEEE Transaction on Magnetics, Vol. 41, No. 5, 2005, pp. 2028-2031.
http://dx.doi.org/10.1109/tmag.2005.846266

S.M.Jang and J.Y.Choi, “Dynamic performance of tubular linear actuator with Halbach array and mechanical spring driven by PWM inverter” IEEE Transaction on Magnetics, Vol. 42, No. 10, 2006, pp. 3518-3520.
http://dx.doi.org/10.1109/tmag.2006.879083

T. Mizuno, M. Iwadare, M. Nanahara, K. Koyama, T. Anzai, M. Nirei, H. Yamada “Considerations on electrical and mechanical time constants of a moving-magnet-type linear DC motor”, Sensors and Actuators A: Physical, Vol. 81, Issues 1–3, 2000, pp. 301-304.
http://dx.doi.org/10.1016/s0924-4247(99)00180-6

Abdou, W.Tereshkovich “Performance evaluation of a permanent magnet brushless DC linear drive for high-speed machining using finite element analysis”, Finite Elements in Analysis and Design, Vol. 35, Issue 2, 2000, pp. 169-188.
http://dx.doi.org/10.1016/s0168-874x(99)00064-5

S. Niu, S. L. Ho, and W. N. Fu, “Performance Analysis of a Novel Magnetic-Geared Tubular Linear Permanent Magnet Machine” IEEE Transaction on Magnetics, Vol. 47, No. 10, 2011, pp. 3598-3601.
http://dx.doi.org/10.1109/tmag.2011.2148167

S. Talebian, Y. Hojjat, M. Ghodsi, M.R. Karafi “Study on Classical and Excess Eddy Currents Losses of Terfenol-D” Journal of Magnetism and Magnetic Materials, Vol.388, 2015, pp 150-159.
http://dx.doi.org/10.1016/j.jmmm.2015.04.033

S. Talebian, Y. Hojjat, M. Ghodsi, M.R. Karafi and S. Mirzamohammadi, a Combined Preisach-Hyperbolic Tangent Model for Magnetic Hysteresis of Terfenol-D, Journal of Magnetism and Magnetic Materials, 2015, http://dx.doi.org/10.1016/j.jmmm.2015.08.006.
http://dx.doi.org/10.1016/j.jmmm.2015.08.006

T Mizuno, T Yaegashi, H Yamamoto, K Shibuya, H Yamada “Efficiency characteristics of linear dc motor by using a novel measuring method”, Sensors and Actuators A: Physical, Vol. 91, Issues 1–2, 2001, pp. 137-140.
http://dx.doi.org/10.1016/s0924-4247(01)00465-4

B.L.J Gysen, E.A “Analytical and Numerical Techniques for Solving Laplace and Poisson Equations in a Tubular Permanent-Magnet Actuator: Part I. Semi-Analytical Framework”, IEEE Transaction on Magnetics, Vol. 44, No. 7, 2008, pp. 1751-1761.
http://dx.doi.org/10.1109/tmag.2008.922416

Sy-Ruen Huang, H.T. Chen, C.H. Chung, C.Y Chu, G. C.Li, C.C Wu, “Multivariable direct-drive linear generators for wave energy”, Applied Energy, Vol. 100, 2012, pp. 112-117.
http://dx.doi.org/10.1016/j.apenergy.2012.03.038

J.F.Pan, Yu Zou, N. Cheung, G. Cao,“The direct-drive sensorless generation system for wave energy utilization”, Electrical Power and Energy Systems, Vol. 62, 2014, pp. 29-37.
http://dx.doi.org/10.1016/j.ijepes.2014.04.017

K. Rhinefrank, E. B. Agamloh, A. V. Jouanne, A.K. Wallace, J. Prudell, K. Kimble, J.Aills, E.Schmidt, P.Chan, B. Sweeny, A. Schacher, “Novel ocean energy permanent magnet linear generator buoy” , Renewable Energy, Vol. 31, 2006, pp. 1279-1298.
http://dx.doi.org/10.1016/j.renene.2005.07.005

M.Ghodsi, Higuchi T. “Improvement of Magnetic Circuit in Levitation System Using HTS and Soft Magnetic Material”; IEEE Transactions on Magnetics, Vol. 41, No. 10, 2005, pp. 4003-4005.
http://dx.doi.org/10.1109/tmag.2005.855162

Ghodsi M., Modabberifar M. “Quality Factor, Static and Dynamic Responses of Miniature Galfenol Actuator at Wide Range of Temperature”; International Journal of Physical Sciences, Vol. 6(36), 2010, pp 8143-8150.
http://dx.doi.org/10.5897/ijps11.918

M.Ghodsi, Higuchi T. “Novel Magnetostrictive Bimetal Actuator Using Permendur”; Advanced Materials Research, Vols. 47-50, 2008, pp. 262-265.
http://dx.doi.org/10.4028/www.scientific.net/amr.47-50.262

M.Ghodsi, Teshima H., Hirano H., Higuchi T. and Summers E. “Zero-Power Positioning Actuator for Cryogenic Environments by Combining Magnetostrictive Bimetal and HTS”; Sensors and Actuators A, Vol.135, 2007, pp. 787-791.
http://dx.doi.org/10.1016/j.sna.2006.09.002

M. Ghodsi, H.Teshima, H. Hirano and T. Higuchi: “Numerical Modeling of Iron Yoke Levitation Using the Pinning Effect of High Temperature Superconductor”; IEEE Transactions on Magnetics, Vol. 43, No. 5, 2007, pp. 2001-2008.
http://dx.doi.org/10.1109/tmag.2006.890218

M. Ghodsi, S.M.R. Loghmanian “Effect of forging on ferromagnetic properties of low-carbon steel”; IEEE International conference ICMSAO 2011, Kuala Lumpur, Malaysia, 2011.
http://dx.doi.org/10.1109/icmsao.2011.5775591

Douglas C. Montgomery “Design and Analysis of Experiments” Sixth Edition, (John Wiley& Sons, 2005).
http://dx.doi.org/10.1002/qre.458

Jaganathan, P., Sivasubramanian, Krishnaraj, V., Experimental investigation of surface roughness and tool life in hard turning of AISI M2 Steel using CBN insert, (2014) International Review of Mechanical Engineering (IREME), 8 (1), pp. 174-189.

Jai Aultrin, K.S., Dev Anand, M., Optimization of machining parameters in AWJM process for lead tin alloy using RSM and regression analysis, (2015) International Review of Mechanical Engineering (IREME), 9 (2), pp. 136-144.
http://dx.doi.org/10.15866/ireme.v9i2.4791

Fairuz, M.A., Hafiezal, M.R.M., Hussin, R., Adam, S.A., Aiman, A.F., Performance Study of WEDMed on Inconel 718 by Using Response Surface Methodology, (2013) International Review of Mechanical Engineering (IREME), 7 (4), pp. 716-720.

Suresh, P., Marimuthu, K., Ranganathan, S., Predictive model for surface roughness using ANN and RSM approach, (2013) International Review on Modelling and Simulations (IREMOS), 6 (4), pp. 1344-1349.

Zuorro, A., Modelling of polyphenol recovery from olive pomace by response surface methodology, (2014) International Review on Modelling and Simulations (IREMOS), 7 (6), pp. 1023-1028.
http://dx.doi.org/10.15866/iremos.v7i6.4243

Vijayan, D., Seshagiri Rao, V., A parametric optimization of FSW process using RSM based grey relational analysis approach, (2014) International Review of Mechanical Engineering (IREME), 8 (2), pp. 328-337.

Subramonian, S., Milkey, K.R., Samsudin, A.R., Dubey, A.K., Kidd, P., RSM modelling and optimization of CO2 laser machining of industrial PVC foam, (2013) International Review on Modelling and Simulations (IREMOS), 6 (4), pp. 1339-1343.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize