Open Access Open Access  Restricted Access Subscription or Fee Access

A Review: Optimal Distributed Generation Planning and Power Quality Issues


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v11i2.5806

Abstract


This paper reviews the methods employed for the optimal planning of Distributed Generation (DG) for the past few years to overcome power quality issues. The motivations, advantages of DG and the research planning are inserted to impart a brief understanding on the need of optimal DG's planning. Three types of method commonly applied by researchers in order to ascertain the proper location and size of DGs are discussed, which are analytical, heuristic and numerical methods. DGs are unavoidable from having power quality events. The most common power quality issues experienced by distribution network are voltage sags and harmonic distortion. This paper presents some methods commonly used by researchers to improve the power quality of the distribution system network.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


Analytical Method; Distributed Generation; Harmonic Distortion; Heuristic Method; Numerical Method; Optimal Planning; Power Quality; Voltage Sags

Full Text:

PDF


References


N.Jenkins, J.B.Ekanayake, and G.Strbac, Distributed Generation. The Institution of Engineering and Technology, 2010.
http://dx.doi.org/10.1049/pbrn001e

M. H. J. Bollen and F. Hassan, Integration of Distributed Generation in the Power System, First. John Wiley & Sons, Inc., 2011.
http://dx.doi.org/10.1002/9781118029039

H. L. Willis, Distributed Power Generation: Planning and Evaluation. CRC Press, 2000.
http://dx.doi.org/10.1201/b16836

M. R. AlRashidi and M. F. AlHajri, “Proper planning of multiple distributed generation sources using heuristic approach,” in 2011 4th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), 2011, pp. 1–5.
http://dx.doi.org/10.1109/icmsao.2011.5775570

P. S. Georgilakis and N. D. Hatziargyriou, “Optimal Distributed Generation Placement in Power Distribution Networks: Models, Methods, and Future Research,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3420–3428, 2013.
http://dx.doi.org/10.1109/tpwrs.2012.2237043

H. Nguyen Cong, N. Mithulananthan, and R. C. Bansal, “Location and Sizing of Distributed Generation Units for Loadabilty Enhancement in Primary Feeder,” IEEE Syst. Journal, vol. 7, no. 4, pp. 797–806, 2013.
http://dx.doi.org/10.1109/jsyst.2012.2234396

S. Biswas, S. K. Goswami, and A. Chatterjee, “A Study of the Factors Influencing the Optimal Size and Site of Distributed Generations ,” J. Clean Energy Technol., vol. 2, no. 1, p. 6, 2014.
http://dx.doi.org/10.7763/jocet.2014.v2.85

J. A. Glenn and Prof.S.Thangalakshmi, “Optimal arrangement of different types of distribution generation resources in distribution network,” Int. J. Innov. Res. Eng. Sci., vol. 3, no. 3, p. 8, 2014.

A. Silvestri, A. Berizzi, and S. Buonanno, “Distributed generation planning using genetic algorithms,” in International Conference on Electric Power Engineering, 1999. PowerTech Budapest 99., 1999, p. 257.
http://dx.doi.org/10.1109/ptc.1999.826689

H. Xiao-Bing, W. Ming, and E. Di Paolo, “Calculating Complete and Exact Pareto Front for Multiobjective Optimization: A New Deterministic Approach for Discrete Problems,” IEEE Trans. Cybern., vol. 43, no. 3, pp. 1088–1101, 2013.
http://dx.doi.org/10.1109/tsmcb.2012.2223756

H. L. Willis, “Analytical methods and rules of thumb for modeling DG-distribution interaction,” in IEEE Power Engineering Society Summer Meeting, 2000. , 2000, vol. 3, pp. 1643–1644 vol. 3.
http://dx.doi.org/10.1109/pess.2000.868774

W. Caisheng and M. H. Nehrir, “Analytical approaches for optimal placement of distributed generation sources in power systems,” IEEE Trans. Power Syst., vol. 19, no. 4, pp. 2068–2076, 2004.
http://dx.doi.org/10.1109/tpwrs.2004.836189

C. Yammani, S. Maheswarapu, and S. K. Matam, “Optimal placement and sizing of multi Distributed generations with renewable bus available limits using Shuffled Bat algorithm,” in IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE), 2014, 2014, pp. 1–6.
http://dx.doi.org/10.1109/ccece.2014.6901066

Naresh Acharya, Pukar Mahat, and N.Mithulananthan, “An analytical approach for DG allocation in primary distribution network,” Int. J. Electr. Power Energy Syst., pp. 1–5, 2006.
http://dx.doi.org/10.1016/j.ijepes.2006.02.013

M. H. Moradi and M. Abedini, “A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems,” Int. J. Electr. Power Energy Syst., vol. 34, no. 1, pp. 66–74, 2012.
http://dx.doi.org/10.1016/j.ijepes.2011.08.023

T. Gozel and M. H. Hocaoglu, “An analytical method for the sizing and siting of distributed generators in radial system,” Electr. Power Syst. Res., vol. 79, no. 6, pp. 912–918, 2008.
http://dx.doi.org/10.1016/j.epsr.2008.12.007

S. Elsaiah, M. Benidris, and J. Mitra, “Analytical approach for placement and sizing of distributed generation on distribution systems,” Gener. Transm. Distrib. IET, vol. 8, no. 6, pp. 1039–1049, 2014.
http://dx.doi.org/10.1049/iet-gtd.2013.0803

H. Duong Quoc, N. Mithulananthan, and R. C. Bansal, “Analytical Expressions for DG Allocation in Primary Distribution Networks,” IEEE Trans. Energy Convers., vol. 25, no. 3, pp. 814–820, 2010.
http://dx.doi.org/10.1109/tec.2010.2044414

S. Kalambe and G. Agnihotri, “Extraction of Transmission Parameters for Siting and Sizing of Distributed Energy Sources in Distribution Network,” J. Energy, vol. 2013, p. 9, 2013.
http://dx.doi.org/10.1155/2013/938958

H. Duong Quoc and N. Mithulananthan, “Multiple Distributed Generator Placement in Primary Distribution Networks for Loss Reduction,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1700–1708, 2013.
http://dx.doi.org/10.1109/tie.2011.2112316

O. I. Elgerd, Electric energy systems theory: an introduction. McGraw-Hill, 1971.

“Heuristics: Intelligent Search Strategies for Computer Problem Solving,” AI Magazine, vol. 8, no. 1, Spring, 1987.

S. Mau, “What is the Kalman Filter and How can it be used for Data Fusion? .” 2005.

L. Matthies, T. Kanade, and Ri. Szeliski, “Kalman Filter-based Algorithms for Estimating Depth from Image Sequence,” Int. J. Comput. Vis., vol. 3, pp. 209–236, 1989.
http://dx.doi.org/10.1007/bf00133032

L. Soo-Hyoung and P. Jung-Wook, “Selection of Optimal Location and Size of Multiple Distributed Generations by Using Kalman Filter Algorithm,” IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1393–1400, 2009.
http://dx.doi.org/10.1109/tpwrs.2009.2016540

L. Soo Hyoung and P. Jung-Wook, “Optimal Placement and Sizing of Multiple DGs in a Practical Distribution System by Considering Power Loss,” IEEE Trans. Ind. Appl., vol. 49, no. 5, pp. 2262–2270, 2013.
http://dx.doi.org/10.1109/tia.2013.2260117

R. Faragher, “Understanding the Basis of the Kalman Filter Via a Simple and Intuitive Derivation,” IEEE Signal Processing Magazine, pp. 128–132, 2012.
http://dx.doi.org/10.1109/msp.2012.2203621

H. A. Hejazi, A. R. Araghi, B. Vahidi, S. H. Hosseinian, M. Abedi, and H. Mohsenian-Rad, “Independent distributed generation planning to profit both utility and DG investors,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1170–1178, 2013.
http://dx.doi.org/10.1109/tpwrs.2012.2219325

D. Duckworth, “pykalman 0.9.2 documentation,” 2012. [Online]. Available: http://pykalman.github.io/index.html.

“Genetic Algorithms.” [Online]. Available: http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol1/hmw/article1.html.

M. F. Akorede, H. Hizam, I. Aris, and M. Z. A. A. Kadir, “Effective method for optimal allocation of distributed generation units in meshed electric power systems,” IET Gener. Transm. Distrib., p. 12, 2010.
http://dx.doi.org/10.1049/iet-gtd.2010.0199

S. Jain, G. Agnihotri, S. Kalambe, and R. Kamdar, “Siting and Sizing of DG in Medium Primary Radial Distribution System with Enhanced Voltage Stability,” Chinese J. Eng., vol. 2014, p. 9, 2014.
http://dx.doi.org/10.1155/2014/518970

V. A. Evangelopoulos and P. S. Georgilakis, “Optimal distributed generation placement under uncertainties based on point estimate method embedded genetic algorithm,” Gener. Transm. Distrib. IET, vol. 8, no. 3, pp. 389–400, 2014.
http://dx.doi.org/10.1049/iet-gtd.2013.0442

“Intelligent Control Techniques in Mechatronics - Genetic algorithm.” [Online]. Available: http://www.ro.feri.uni-mb.si/predmeti/int_reg/Predavanja/Eng/3.Genetic algorithm/_18.html.

X. hu, “Particle Swarm Optimization,” 2006. [Online]. Available: http://www.swarmintelligence.org/.

T. Niknam, “An efficient hybrid evolutionary algorithm based on PSO and HBMO algorithms for multi-objective Distribution Feeder Reconfiguration,” Energy Convers. Manag., vol. 50, no. 8, pp. 2074–2082, 2009.
http://dx.doi.org/10.1016/j.enconman.2009.03.029

B. H. Dias, L. W. Oliveira, F. V Gomes, I. C. Silva, and E. J. Oliveira, “Hybrid heuristic optimization approach for optimal Distributed Generation placement and sizing,” in IEEE Power and Energy Society General Meeting, 2012 , 2012, pp. 1–6.
http://dx.doi.org/10.1109/pesgm.2012.6345653

A. M. El-Zonkoly, “Optimal placement of multi-distributed generation units including different load models using particle swarm optimisation,” Gener. Transm. Distrib. IET, vol. 5, no. 7, pp. 760–771, 2011.
http://dx.doi.org/10.1049/iet-gtd.2010.0676

T. Wen Shan, M. Y. Hassan, H. A. Rahman, M. P. Abdullah, and F. Hussin, “Multi-distributed generation planning using hybrid particle swarm optimisation- gravitational search algorithm including voltage rise issue,” Gener. Transm. Distrib. IET, vol. 7, no. 9, pp. 929–942, 2013.
http://dx.doi.org/10.1049/iet-gtd.2013.0050

M. Dorigo, “Ant Colony Optimization,” 2010. [Online]. Available: http://www.aco-metaheuristic.org/about.html.

M. Dorigo, “Ant Colony Optimization,” Scholarpedia. http://www.scholarpedia.org/, 2007.
http://dx.doi.org/10.4249/scholarpedia.1461

S. Favuzza, G. Graditi, M. G. Ippolito, and E. R. Sanseverino, “Optimal Electrical Distribution Systems Reinforcement Planning Using Gas Micro Turbines by Dynamic Ant Colony Search Algorithm,” IEEE Trans. Power Syst., vol. 22, no. 2, pp. 580–587, 2007.
http://dx.doi.org/10.1109/tpwrs.2007.894861

W. Lingfeng and C. Singh, “Reliability-Constrained Optimum Placement of Reclosers and Distributed Generators in Distribution Networks Using an Ant Colony System Algorithm,” IEEE Trans. Syst. Man, Cybern. Part C Appl. Rev., vol. 38, no. 6, pp. 757–764, 2008.
http://dx.doi.org/10.1109/tsmcc.2008.2001573

W. Yuan-Kang, L. Ching-Yin, L. Le-Chang, and T. Shao-Hong, “Study of Reconfiguration for the Distribution System With Distributed Generators,” IEEE Trans. Power Deliv., vol. 25, no. 3, pp. 1678–1685, 2010.
http://dx.doi.org/10.1109/tpwrd.2010.2046339

A. Shekhawat, P. Poddar, and D. Boswal, “Ant colony Optimization Algorithms : Introduction and Beyond.” 2009.

D. Manjarres, I. Landa-Torres, S. Gil-Lopez, J. Del Ser, M. N. Bilbao, S. Salcedo-Sanz, and Z. W. Geem, “Survey A survey on applications of the harmony search algorithm,” Eng. Appl. Artif. Intell., vol. 26, no. 8, pp. 1818–1831, 2013.
http://dx.doi.org/10.1016/j.engappai.2013.05.008

K. Nekooei, M. M. Farsangi, H. Nezamabadi-pour, and K. Y. Lee, “An Improved Multi-Objective Harmony Search for Optimal Placement of DGs in Distribution Systems,” IEEE Trans. Smart Grid, vol. 4, no. 1, pp. 557–567, 2013.
http://dx.doi.org/10.1109/tsg.2012.2237420

W. Sheng, K. Liu, Y. Li, Y. Liu, and X. Meng, “Improved Multiobjective Harmony Search Algorithm with Application to Placement and Sizing of Distributed Generation,” Math. Probl. Eng., vol. 2014, p. 8, 2014.
http://dx.doi.org/10.1155/2014/871540

R. S. Rao, K. Ravindra, K. Satish, and S. V. L. Narasimham, “Power Loss Minimization in Distribution System Using Network Reconfiguration in the Presence of Distributed Generation,” Power Systems, IEEE Transactions on, vol. 28, no. 1. pp. 317–325, 2013.
http://dx.doi.org/10.1109/tpwrs.2012.2197227

M. Tarkeshwar and V. Mukherjee, “Quasi-oppositional harmony search algorithm and fuzzy logic controller for load frequency stabilisation of an isolated hybrid power system,” Generation, Transmission & Distribution, IET, vol. 9, no. 5. pp. 427–444, 2015.
http://dx.doi.org/10.1049/iet-gtd.2014.0502

M. Mahdavi, M. Fesanghary, and E. Damangir, “An improved harmony search algorithm for solving optimization problems,” Appl. Math. Comput., vol. 188, no. 2, pp. 1567–1579, 2007.
http://dx.doi.org/10.1016/j.amc.2006.11.033

Z. Wei, X. Zhao, K. Wang, and Y. Xiong, “Bus Dispatching Interval Optimization Based on Adaptive Bacteria Foraging Algorithm,” Math. Probl. Eng., vol. 2012, p. 10, 2012.
http://dx.doi.org/10.1155/2012/389086

M. Eslamian, S. H. Hosseinian, and B. Vahidi, “Bacterial Foraging-Based Solution to the Unit-Commitment Problem,” IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1478–1488, 2009.
http://dx.doi.org/10.1109/tpwrs.2009.2021216

V. Rashtchi and M. Darabian, “A New BFA-Based Approach for Optimal Sitting and Sizing of Distributed Generation in Distribution System,” Int. J. Autom. Control Eng., vol. 1, no. 1, p. 10, 2012.

X. Mai and L. Li, “Bacterial foraging algorithm based on gradient particle swarm optimization algorithm,” in Eighth International Conference on Natural Computation (ICNC), 2012 , 2012, pp. 1026–1030.
http://dx.doi.org/10.1109/icnc.2012.6234588

I. A. Hodashinskii, N. N. Zemtsov, and R. V Meshcheryakov, “Construction of Fuzzy Approximaters Based on The Bacterial Foraging Method,” Russ. Phys. J., vol. 55, no. 3, p. 5, 2012.
http://dx.doi.org/10.1007/s11182-012-9811-8

L. Xue, Y. Yao, H. Zhou, and Z. Wang, “An Improved Shuffled Frog Leaping Algorithm with Comprehensive Learning for Continuous Optimization,” Proc. 2nd Int. Conf. Comput. Sci. Electron. Eng. (ICCSEE 2013) , pp. 1–4, 2013.
http://dx.doi.org/10.2991/iccsee.2013.192

H. Thai-Hoang, “A modified shuffled frog leaping algorithm for optimal tuning of multivariable PID controllers,” in IEEE International Conference on Industrial Technology, 2008. ICIT 2008. , 2008, pp. 1–6.
http://dx.doi.org/10.1109/icit.2008.4608439

Q. Wang, H. Yang, and X. Sun, “A Modified Shuffled Frog Leaping Algorithm with Convergence of Update Process in Local Search,” in First International Conference on Instrumentation, Measurement, Computer, Communication and Control, 2011, 2011, pp. 1016–1019.
http://dx.doi.org/10.1109/imccc.2011.256

C. Yammani, N. Siripurapu, S. Maheswarapu, and S. K. Matam, “Optimal placement and sizing of the DER in distribution systems using Shuffled Frog Leap Algorithm,” in IEEE Recent Advances in Intelligent Computational Systems (RAICS), 2011 , 2011, pp. 62–67.
http://dx.doi.org/10.1109/raics.2011.6069273

J. Jiang, Q. Su, M. Li, M. Liu, and L. Zhang, “An Improved Shuffled Frog Leaping Algorithm,” J. Inf. Comput. Sci., p. 8, 2013.
http://dx.doi.org/10.12733/jics20101552

M. Gomez-Gonzalez, A. López, and F. Jurado, “Optimization of distributed generation systems using a new discrete PSO and OPF,” Electr. Power Syst. Res., vol. 84, no. 1, pp. 174–180, 2012.
http://dx.doi.org/10.1016/j.epsr.2014.12.001

M. P. Aghababa, M. E. Akbari, and A. M. Shotorbani, “An Efficient Modified Shuffled Frog Leaping Optimization Algorithm,” Int. J. Comput. Appl., vol. 32, no. 1, pp. 26–30, 2011.

D. Karaboga, “Artificial bee colony algorithm,” Scholarpedia, vol. 5, 2010.
http://dx.doi.org/10.4249/scholarpedia.6915

D. Karaboga and B. Akay, “A comparative study of Artificial Bee Colony algorithm,” Appl. Math. Comput., vol. 214, no. 1, pp. 108–132, 2009.
http://dx.doi.org/10.1016/j.amc.2009.03.090

F. S. Abu-Mouti and M. E. El-Hawary, “Optimal Distributed Generation Allocation and Sizing in Distribution Systems via Artificial Bee Colony Algorithm,” IEEE Trans. Power Deliv., vol. 26, no. 4, pp. 2090–2101, 2011.
http://dx.doi.org/10.1109/tpwrd.2011.2158246

X.-S. Yang and X. He, “ Firefly algorithm: recent advances and applications,” Int. J. Swarm Intell. 2013, vol. 1, no. 1, pp. 36–50, 2013.
http://dx.doi.org/10.1504/ijsi.2013.055801

M. H. Sulaiman, M. W. Mustafa, A. Azmi, O. Aliman, and S. R. Abdul Rahim, “Optimal allocation and sizing of Distributed Generation in distribution system via Firefly Algorithm,” in IEEE International Power Engineering and Optimization Conference (PEOCO) Melaka, Malaysia, 2012 , 2012, pp. 84–89.
http://dx.doi.org/10.1109/peoco.2012.6230840

K. Nadhir, D. Chabane, and B. Tarek, “Firefly algorithm based energy loss minimization approach for optimal sizing & placement of distributed generation,” in 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), 2013 , 2013, pp. 1–5.
http://dx.doi.org/10.1109/icmsao.2013.6552580

S. K. Pal, C. S. Rai, and A. P. Singh, “Comparative Study of Firefly Algorithm and Particle Swarm Optimization for Noisy Non-Linear Optimization Problems,” I.J. Intell. Syst. Appl., p. 8, 2012.
http://dx.doi.org/10.5815/ijisa.2012.10.06

E. Valian, S. Mohanna, and S. Tavakoli, “Improved Cuckoo Search Algorithm for Global Optimization ,” Int. J. Commun. Inf. Technol., vol. 1, p. 14, 2011.

S. Roy and S. S. Chaudhuri, “Cuckoo Search Algorithm using Lèvy Flight: A Review,” I.J.Modern Educ. Comput. Sci., vol. 12, pp. 10–15, 2013.
http://dx.doi.org/10.5815/ijmecs.2013.12.02

W. Buaklee and K. Hongesombut, “Optimal DG allocation in a smart distribution grid using Cuckoo Search algorithm,” in 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2013 , 2013, pp. 1–6.
http://dx.doi.org/10.1109/ecticon.2013.6559624

N. M. Sabri, M. Puteh, and M. R. Mahmood, “A Review of Gravitational Search Algorithm ,” Int. J. Adv. Comput. Appl., vol. 5, no. 3, p. 39, 2013.

E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: A Gravitational Search Algorithm,” Inf. Sci. (Ny)., vol. 179, no. 13, pp. 2232–2248, 2009.
http://dx.doi.org/10.1016/j.ins.2009.03.004

K. Mistry, V. Bhavsar, and R. Roy, “GSA based optimal capacity and location determination of distributed generation in radial distribution system for loss minimization,” in 11th International Conference on Environment and Electrical Engineering (EEEIC), 2012 , 2012, pp. 513–518.
http://dx.doi.org/10.1109/eeeic.2012.6221431

A. F. A. Kadir, A. Mohamed, H. Shareef, M. Z. C. Wanik, and A. A. Ibrahim, “Optimal Sizing and Placement of Distributed Generation in Distribution System Considering Losses and THDv using Gravitational Search Algorithm,” Przegl. Elektrotech, vol. 89, p. 5, 2013.

Y. Zhang, Y. Li, F. Xia, and Z. Luo, “Immunity-Based gravitational search algorithm,” Proceedings of the Third international conference on Information Computing and Applications. Springer-Verlag, Chengde, China, pp. 754–761, 2012.
http://dx.doi.org/10.1007/978-3-642-34062-8_98

A. F. A. Kadir, A. Mohamed, H. Shareef, A. A. Ibrahim, T. Khatib, and W. Elmenreich, “An improved gravitational search algorithm for optimal placement and sizing of renewable distributed generation units in a distribution system for power quality enhancement,” J. Renew. Sustain. Energy , vol. 6, no. 3, 2014.
http://dx.doi.org/10.1063/1.4878997

S. Duman, Y. Sonmez, U. Guvenc, and N. Yorukeren, “Application of gravitational search algorithm for optimal reactive power dispatch problem,” in Innovations in Intelligent Systems and Applications (INISTA), 2011 International Symposium on, 2011, pp. 519–523.
http://dx.doi.org/10.1109/inista.2011.5946133

I. F. Jr., D. Fister, and X.-S. Yang, “A Hybrid Bat Algorithm,” pp. 1–7, 2013.
http://dx.doi.org/10.1016/b978-0-12-405163-8.00004-1

C. Yammani, S. Maheswarapu, and S. K. Matam, “Optimal placement and sizing of DER’s with load models using BAT algorithm,” in International Conference on Circuits, Power and Computing Technologies (ICCPCT), 2013, 2013, pp. 394–399.
http://dx.doi.org/10.1109/iccpct.2013.6528945

I. A. Farhat, “Ant Colony Optimization for Optimal Distributed Generation in Distribution Systems,” Int. J. Comput. Information, Syst. Control Eng., vol. 7, no. 8, p. 5, 2013.

R. A. Jabr and B. C. Pal, “Ordinal optimisation approach for locating and sizing of distributed generation,” Gener. Transm. Distrib. IET, vol. 3, no. 8, pp. 713–723, 2009.
http://dx.doi.org/10.1049/iet-gtd.2009.0019

M. Deng and Y.-C. Ho, “An ordinal optimization approach to optimal control problems,” Automatica, vol. 35, no. 2, pp. 331–338, 1999.
http://dx.doi.org/10.1016/s0005-1098(98)00155-1

M. F. AlHajri, M. R. AlRashidi, and M. E. El-Hawari, “Improved Sequential Quadratic Programming Approach for Optimal Distribution Generation Deployments via Stability and Sensitivity Analyses,” Electr. Power Components Syst., p. 22, 2010.
http://dx.doi.org/10.1080/15325008.2010.492451

K.-Y. Liu, W. Sheng, and S. Cheng, “A novel improved sequential quadratic programming algorithm to solve DG dispatch in distribution system,” Electrical Machines and Systems (ICEMS), 2013 International Conference on. pp. 1415–1420, 2013.
http://dx.doi.org/10.1109/icems.2013.6713249

J. L. Morales, J. Nocedal, and Y. Wu, “A Sequential Quadratic Programming Algorithm with an Additional Equality Constrained Phase.” p. 30, 2010.
http://dx.doi.org/10.1093/imanum/drq037

Y. M. Atwa, E. F. El-Saadany, M. M. A. Salama, and R. Seethapathy, “Optimal Renewable Resources Mix for Distribution System Energy Loss Minimization,” IEEE Trans. Power Syst., vol. 25, no. 1, pp. 360–370, 2010.
http://dx.doi.org/10.1109/tpwrs.2009.2030276

S. Leyffer, “Deterministic Methods for Mixed Integer Nonlinear Programming,” University of Dundee, Dundee, 1993.

Y. M. Atwa and E. F. El-Saadany, “Probabilistic approach for optimal allocation of wind-based distributed generation in distribution systems,” Renew. Power Gener. IET, vol. 5, no. 1, pp. 79–88, 2011.
http://dx.doi.org/10.1049/iet-rpg.2009.0011

A. G. Barto, S. J. Bradtke, and S. P. Singh, “Learning to act using real-time dynamic programming,” Artif. Intell., vol. 72, no. 1–2, pp. 81–138, 1995.
http://dx.doi.org/10.1016/0004-3702(94)00011-o

N. Khalesi, N. Rezaei, and M. R. Haghifam, “DG allocation with application of dynamic programming for loss reduction and reliability improvement,” Int. J. Electr. Power Energy Syst., vol. 33, no. 2, pp. 288–295, 2011.
http://dx.doi.org/10.1016/j.ijepes.2010.08.024

M. H. J. Bollen, Understanding power quality problems : voltage sags and interruptions. New York: The Institute of Electrical and Electronics Engineers, Inc., 2000.

S.Khalid and B. Dwivedi, “Power quality issues, problems, standards & their effects in industry with corrective means,” Int. J. Adv. Eng. Technol., vol. 1, no. 2, p. 11, 2011.

L. Yun Wei and H. Jinwei, “Distribution System Harmonic Compensation Methods: An Overview of DG-Interfacing Inverters,” IEEE Ind. Electron. Mag., vol. 8, no. 4, pp. 18–31, 2014.
http://dx.doi.org/10.1109/mie.2013.2295421

M. Ayub, G. Chin Kim, and A. F. A. Kadir, “The impact of grid-connected PV systems on Harmonic Distortion,” in Innovative Smart Grid Technologies - Asia (ISGT Asia), 2014 IEEE, 2014, pp. 669–674.
http://dx.doi.org/10.1109/isgt-asia.2014.6873872

A. Parizad and A. H. Khazali, “Unbalanced Distribution Network Planning by Sitting and Sizing of Distributed Generationand Harmonic Filter Due to Losses and THD Minimization ,” Int. Rev. Electr. Eng., vol. 5, no. 2, 2010.

V. R. Pandi, H. H. Zeineldin, and X. Weidong, “Determining Optimal Location and Size of Distributed Generation Resources Considering Harmonic and Protection Coordination Limits,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1245–1254, 2013.
http://dx.doi.org/10.1109/tpwrs.2012.2209687

Asna.S.Asok, “Multi Objective Optimal Siting and Sizing of Inverter Based Distributed Generation Units Considering Harmonic Limits in Meshed Electric Power System.,” Int. J. Appl. Inf. Commun. Technol., vol. 1, no. 1, pp. 25–30, 2014.

A. A. Abdelsalam and E. F. El-Saadany, “Probabilistic approach for optimal planning of distributed generators with controlling harmonic distortions,” Gener. Transm. Distrib. IET, vol. 7, no. 10, pp. 1105–1115, 2013.
http://dx.doi.org/10.1049/iet-gtd.2012.0769

M. Heydari and S. A. Gholamian, “Optimal Placement and Sizing of Capacitor and Distributed Generation with Harmonic and Resonance Considerations Using Discrete Particle Swarm Optimization,” Int. J. Intell. Syst. Appl., vol. 5, no. 7, pp. 42–49, 2013.
http://dx.doi.org/10.5815/ijisa.2013.07.06

S. Biswas, S. K. Goswami, and A. Chatterjee, “Optimal distributed generation placement in shunt capacitor compensated distribution systems considering voltage sag and harmonics distortions,” Gener. Transm. Distrib. IET, vol. 8, no. 5, pp. 783–797, 2014.
http://dx.doi.org/10.1049/iet-gtd.2013.0423

D. Kavitha, P. Renuga, and S. M. Priya, “Optimal Sizing and Placement of DIstributed Generators in DIstorted Distribution System by using Hybrid GA-PSO,” J. Theor. Appl. Inf. Technol., vol. 61, no. 3, pp. 609–616, 2014.

R. P.Bingham, “Sags and swells.” p. 20, 1998.

M. J. Jahromi, E. Farjah, and M. Zolghadri, “Mitigating voltage sag by optimal allocation of Distributed Generation using Genetic Algorithm,” in 9th International Conference on Electrical Power Quality and Utilisation, 2007. EPQU 2007. , 2007, pp. 1–6.
http://dx.doi.org/10.1109/epqu.2007.4424197

S. C. Reddy, P.V.N.Prasad, and A. J. Laxmi, “Hybrid Approach for Voltage Sag Mitigation in Distribution System by Optimal Location and Size of Distributed Generation,” J. Electr. Syst., p. 16, 2013.

S. M. Farashbashi-Astaneh and A. Dastfan, “Optimal Placement and Sizing of DG for Loss Reduction,Voltage Profile Improvement and Voltage Sag Mitigation ,” Int. Conf. Renew. Energies Power Qual., p. 5, 2010.

K. Ramudu, T. Annamacharya Institute of, R. Sciences, M. P. Lalitha, and P. S. Babu, “Siting and Sizing of DG for Loss Reduction and Voltage Sag Mitigation in RDS Using ABC Algorithm,” Int. J. Electr. Comput. Eng., vol. 3, no. 6, pp. 814–822, 2013.
http://dx.doi.org/10.11591/ijece.v3i6.4399

O. Amanifar and M. E. H. Golshan, “Optimal DG allocation and sizing for mitigating voltage sag in distribution systems with respect to economic consideration using Particle Swarm Optimization,” in Proceedings of 17th Conference on Electrical Power Distribution Networks (EPDC), 2012 , 2012, pp. 1–8.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize