Open Access Open Access  Restricted Access Subscription or Fee Access

Replacing Copper with New Carbon Nanomaterials in Electrical Machine Windings


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v10i1.5253

Abstract


Electrical machines have significant improvement potential. Nevertheless, the field is characterized by incremental innovations. Admittedly, steady improvement has been achieved, but no breakthrough development. Radical development in the field would require the introduction of new elements, such that may change the whole electrical machine industry system. Recent technological advancements in nanomaterials have opened up new horizons for the macroscopic application of carbon nanotube (CNT) fibres. With values of 100 MS/m measured on individual CNTs, CNT fibre materials hold promise for conductivities far beyond those of metals. Highly conductive, lightweight and strong CNT yarn is finally within reach; it could replace copper as a potentially better winding material. Although not yet providing low resistivity, the newest CNT yarn offers attractive perspectives for accelerated efficiency improvement of electrical machines. In this article, the potential for using new CNT materials to replace copper in machine windings is introduced. It does so, firstly, by describing the environment for a change that could revolutionize the industry and, secondly, by presenting the breakthrough results of a prototype construction. In the test motor, which is to our knowledge the first in its kind, the presently most electrically conductive carbon nanotube yarn replaces usual copper in the windings.
Copyright © 2015 Praise Worthy Prize - All rights reserved.

Keywords


Electrical Machine; Winding Material; Carbon Nanotube Yarn; Machine Design; Efficiency Improvement; Motor Prototype Construction

Full Text:

PDF


References


Commission Regulation (EC) No 640/2009 of 22 July 2009. Available at eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:191:0026:0034:EN:PDF

F.W. Geels, “Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study”, Research Policy, vol. 3, 2002, pp. 1257–1274
http://dx.doi.org/10.1016/s0048-7333(02)00062-8

Z. Wenliang, T.A. Lipo, K. Byung-Il, “Material-Efficient Permanent-Magnet Shape for Torque Pulsation Minimization in SPM Motors for Automotive Applications”, IEEE Trans. on Industrial Electronics, vol. 61 n. 10, 2014. pp. 5779-5787.
http://dx.doi.org/10.1109/tie.2014.2301758

A.Boglietti, A.El-Refaie, O.Drubel, A.Omekanda, N.Bianchi, “Electrical Machine Topologies: Hottest Topics in the Electrical Machine Research Community”, IEEE Trans. on Industrial Electronics magazine, vol. 8 n. 2, 2014. pp. 18-30.
http://dx.doi.org/10.1109/mie.2013.2294077

A.Tenconi, S.Vaschetto, A.Vigliani, “Electrical Machines for High-Speed Applications: Design Considerations and Tradeoffs”, IEEE Trans. on Industrial Electronics, vol. 61 n. 6, 2014. pp. 3022-3029.
http://dx.doi.org/10.1109/tie.2013.2276769

G.-A. Capolino, A. Cavagnino, “New Trends in Electrical Machines Technology – Part I”, IEEE Trans. on Industrial Electronics, vol. 61 n. 8, 2014. pp. 4281-4285.
http://dx.doi.org/10.1109/tie.2013.2295770

G. -A. Capolino, A. Cavagnino, “New Trends in Electrical Machines Technology – Part II”, IEEE Trans. on Industrial Electronics, vol. 61 n. 8, 2014. pp. 4931-4936.
http://dx.doi.org/10.1109/tie.2014.2301740

Alexandrova, Y., Semken, R.S., Pyrhonen, J., Permanent magnet synchronous generator design solution for large direct-drive wind turbines, (2013) International Review of Electrical Engineering (IREE), 8 (6), pp. 1728-1737.

Ismagilov, F., Khairullin, I., Vavilov, V., Electromagnetic processes in the rotor shroud of a High-Speed Magneto-Electric generator under sudden Short-Circuit, (2014) International Review of Electrical Engineering (IREE), 9 (5), pp. 913-918.
http://dx.doi.org/10.15866/iree.v9i5.3148

J. Liu, R. Younesi, T. Gustafsson, K. Edström, J. Zhu, “Pt/α-MnO2 nanotube: A highly active electrocatalyst for Li–O2 battery,” Nano Energy, Vol. 10, Nov. 2014 pp. 19-27
http://dx.doi.org/10.1016/j.nanoen.2014.08.022

K.C.Singh, “Basic Physics”, PHI Learning Private Limited, India 2009.

A. F. Mitul, L. Mohammad, S. Venkatesan, N. Adhikari, S. Sigdel, Q. Wang, A. Dubey, D. Khatiwada, and Q. Qiao, ” Low temperature efficient interconnecting layer for tandem polymer solar cells,” Nano Energy, Vol. 11, 2015 pp. 56-63.
http://dx.doi.org/10.1016/j.nanoen.2014.09.026

J. Pyrhönen, T. Jokinen, V. Hrabovcova, “Design of Rotating Electrical Machines”. John Wiley et Sons 2nd edition, Finland 2008.
http://dx.doi.org/10.1002/9781118701591

The European Copper Industry’s Manifesto, 2014, available at www.copperalliance.eu/industry/regulatory-framework/voluntary-initiatives/manifesto (October, 2014)

X.Wang, N.Behabtu, C.C.Young, D.E.Tsentalovich, M.Pasquali, J.Kono, “High-Ampacity Power Cables of Tightly Packed and Aligned Carbon nanotubes”, Adv. Functional Materials 2014.
http://dx.doi.org/10.1002/adfm.201303865

B.Q. Wei, R.Vajtai, P.M. Ajayan, “Reliability and current carrying capacity of carbon nanotubes”, Applied Physics Letter, vol. 79, n.8, 2001, pp. 1172 - 1174.
http://dx.doi.org/10.1063/1.1396632

P.L.McEuen, M.S.Fuhrer,H.Park, “Single-Walled Carbon Nanotube Electronics”, IEEE Trans.Nanotech. 2002, 1, pp. 78-85.
http://dx.doi.org/10.1109/tnano.2002.1005429

M.F.L.De Volder, S.H.Tawfick, R.H. Baughman, A.J. Hart, “Carbon Nanotubes: Present and Future Commercial Applications”, Science, Vol. 339, n. 6119, 2013, pp. 535-539
http://dx.doi.org/10.1126/science.1222453

N. Behabtu, C. C. Young, D. E. Tsentalovich, O. Kleinerman, X.Wang, A. W. K. Ma, E.A.Bengio, R. F. ter Waarbeek, J. J. de Jong,R. E. Hoogerwerf, S. B. Fairchild, J. B. Ferguson, B. Maruyama, J. Kono, Y.Talmon, Y. Cohen, M. J. Otto, M. Pasquali, “Strong, light, multi-functional fibres of carbon nanotubes with ultrahigh conductivity”, Science 2013, 339, 182.
http://dx.doi.org/10.1126/science.1228061

L. Kurzepa, A. Lekawa-Raus, J. Patmore, K. Koziol, “Replacing Copper Wires with Carbon Nanotube Wires in Electrical Transformers”, Adv. Functional Materials, 2014, 24, pp.619-624.
http://dx.doi.org/10.1002/adfm.201302497

C. Chae, H.-J. Noh, J. K. Lee, B. Scrosati, and Y.-K. Sun, “A High-Energy Li-Ion Battery Using a Silicon-Based Anode and a Nano-Structured Layered Composite Cathode”, Adv. Functional materials, 12 Feb 2014, pp 3036–3042.
http://dx.doi.org/10.1002/adfm.201303766

B. S. Mitchell, “An Introduction to Materials Engineering and Science: For Chemical and Materials Engineers”, John Wiley & Sons, Inc,USA 2004.

S.L. Candelaria, Y. Shao, W. Zhou, X. Li, J. Xiao, J.G. Zhang, Y. Wang, J. Liu, J. Li, G. Zao, “Nanostructured carbon for energy storage and conversion”, Nano Energy, Vol. 1, 2012, pp 195–220
http://dx.doi.org/10.1016/j.nanoen.2011.11.006

Rajan Prakash, R., Venkatesh, P., Kottaisamy, M., Edwin Xavier, S.A., Silicone rubber MgO nanocomposite for high voltage outdoor insulation application, (2013) International Review of Electrical Engineering (IREE), 8 (5), pp. 1641-1646.

H.Shimotani, S.Tsuda, H.Yuan, Y.Yomogida, R.Moriya, “Continuous Band-Filling Control and One-Dimensional Transport inMetallic and Semiconducting Carbon Nanotube Tangled Films”, Adv. Functional Materials, 2014.B.Q. Wei, R.Vajtai, P.M. Ajayan, “Reliability and current carrying capacity of carbon nanotubes”, Applied Physics Letter, vol. 79, n.8, 2001, pp. 1172 - 1174.
http://dx.doi.org/10.1002/adfm.201470141


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize